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ABSTRACT

At design time, modern operating systems are locked in a spe-
cific safety and isolation strategy that mixes one or more hard-
ware/software protection mechanisms (e.g. user/kernel separation);
revisiting these choices after deployment requires a major refac-
toring effort. This rigid approach shows its limits given the wide
variety of modern applications’ safety/performance requirements,
when new hardware isolation mechanisms are rolled out, or when
existing ones break.

We present FlexOS, a novel OS allowing users to easily specialize
the safety and isolation strategy of an OS at compilation/deployment
time instead of design time. This modular LibOS is composed of fine-
grained components that can be isolated via a range of hardware
protection mechanisms with various data sharing strategies and
additional software hardening. The OS ships with an exploration
technique helping the user navigate the vast safety/performance
design space it unlocks. We implement a prototype of the system
and demonstrate, for several applications (Redis/Nginx/SQLite),
FlexOS’ vast configuration space as well as the efficiency of the
exploration technique: we evaluate 80 FlexOS configurations for
Redis and show how that space can be probabilistically subset to
the 5 safest ones under a given performance budget. We also show
that, under equivalent configurations, FlexOS performs similarly or
better than existing solutions which use fixed safety configurations.

CCS CONCEPTS

« Software and its engineering — Operating systems; « Secu-
rity and privacy — Operating systems security.
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1 INTRODUCTION

Modern OS architectures are heavily interlinked with the protection
mechanisms they rely upon. OSes rigidly commit at design time
to various high-level safety decisions, such as the use of software
verification, hardware isolation, runtime checking, etc. Changing
these after deployment is rare and costly.

The current OS design landscape (depicted in Figure 1) broadly
consists of micro-kernels [34, 45], which favor hardware protection
and verification over performance, monolithic kernels [8], which
choose privilege separation and multiple address spaces (ASes) to
isolate applications, but assume all kernel code is trusted, and single-
address-space OSes (SASOSes), which attempt to bring isolation
within the address space [12, 33, 52], or ditch all protection for
maximum performance [47, 58, 70]. Making post-design changes
to these high-level safety decisions is very difficult to implement.
For instance, removing the user/kernel separation [59] requires
a lot of engineering effort, as does breaking down a process into
multiple address spaces for isolation [42]. Recently, the potential
safety benefits hinted by the proposal to introduce Rust components
in Linux [23] are questioned by the fact that the bulk of the kernel
code will remain written in a memory-unsafe language [22].

The rigid use of safety primitives in modern OSes poses a number
of problems. First, it precludes per-application OS specialization [24,
39, 60, 62] at a time when modern applications exhibit a wide range
of safety and performance requirements. Prematurely locking the
design into any combination of safety primitives is likely to result
in suboptimal performance/safety in many scenarios. Effortless
specialization for safety is further motivated by the fact that today’s
applications are made up of multiple components showing different
degrees of trust and criticality, and as such requiring various levels
of isolation. Furthermore, new isolation mechanisms [3, 4, 15, 18, 75,
82], with the ability to complement or replace traditional ones, are
regularly being proposed by CPU manufacturers. When multiple
mechanisms can be used for the same task, choosing the most


https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507759
https://doi.org/10.1145/3503222.3507759
https://doi.org/10.1145/3503222.3507759

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

o Nm e - mmmmmmmmm—— - Legend

3 N AR Good compatibility

Q Se
i MicoT s N :’exoi_ adeoff ~~ O with existing apps.
= 5 ~ ~ 3|
. S| Separation Seo " Area ' O Less compatible
$ kernels Seo \ /4 OS research trends

LTSN 'S w_ !

% Moiollth:c ________ Y osas/

a ernels RS Dataplane

3 OSes

Slower Faster
Performance

Figure 1: Design space of OS kernels.

suitable primitive depends on many factors, and should ideally be
postponed to deployment time. Finally, when the protection offered
by a hardware primitive breaks down (e.g. Meltdown [56]), it is
difficult to decide how it should be replaced, and generally costly
to do so.

This leads us to the following research problem: how can we
enable users to easily and safely switch between different isolation
and protection primitives at deployment time, avoiding the lock-in
that characterizes the status-quo?

Our answer is FlexOS, a modular OS design whose compartmen-
talization and protection profile can easily and cost-efficiently be tai-
lored towards a specific application or use-case at build time, as op-
posed to design time. To that aim, we extend the Library OS (LibOS)
model and augment its capacity to be specialized towards a given
use case, historically done for performance reasons [24, 39, 60, 62],
towards the safety dimension.

With FlexOS, the user can decide, at build time, which of the fine-
grained OS components should be placed in which compartment
(e.g. the scheduler, TCP/IP stack, etc.), how to instantiate isolation
and protection primitives for each compartment, what data sharing
strategies to use for communication between compartments, as
well as what software hardening mechanisms should be applied
on which compartments. To that aim, we abstract the common
operations required when compartmentalizing arbitrary software
behind a generic API that is used to retrofit an existing LibOS into
FlexOS. This API limits the manual porting effort of kernel and
application legacy components to the marking of shared data using
annotations. These annotations, alongside other abstract source-
level constructs, are replaced at build time by a code transformation
step that instantiate a given FlexOS safety configuration.

The design space enabled by the system, illustrated on Figure 1,
is very large and difficult for a non-expert user to explore manually.
This leads to the second research question we explore: how to guide
the user navigating the vast design space unlocked by FlexOS? To
answer this, we propose a semi-automated exploration technique
named partial safety ordering, using partially ordered sets to de-
scribe the probabilistic security degrees of FlexOS’ configurations
and identify the safest ones under a given performance budget.

We have implemented a prototype of FlexOS with support for
Intel MPK and VM/EPT-based isolation, as well as a wide range of
hardening mechanisms (CFI [1], ASAN [79], etc.). Our evaluation
using four popular applications demonstrates the wide safety versus
performance tradeoff space unlocked by FlexOS: we evaluate over
160 configurations for Redis and Nginx. We also show the ease of
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exploring different points in that space: our semi-automated explo-
ration technique can probabilistically subset the 80 Redis configura-
tions to the 5 safest ones under a given performance budget. Finally,
we demonstrate that under equivalent configurations, FlexOS per-
forms better or similarly to baselines/competitors: a monolithic
kernel, a SASOS, a microkernel, and a compartmentalized LibOS.

2 FLEXIBLE OS ISOLATION: PRINCIPLES,
CHALLENGES

FlexOS seeks to enable users to easily and safely switch between
different isolation and protection primitives at deployment time.
This section formalizes the fundamental design principles required
to achieve this, the challenges that arise from them, and how we
address them.

2.1 Principles

(P1) The isolation granularity of FlexOS’ components should be
configurable. The compartmentalization strategy, i.e. the number
of compartments and which components are merged/split into
compartments, has a major impact on safety and performance, thus
it should be configurable.

(P2) The hardware isolation mechanisms used should be con-
figurable. There is a wide range of isolation mechanisms with
various safety and performance implications. These should be con-
figurable by the user. For the OS developer, supporting a new mech-
anism should not involve any rewrite/redesign and be as simple as
implementing a well-defined APL

(P3) Software hardening and isolation mechanisms should
be configurable. Software hardening techniques such as CFI, or
Software Fault Isolation (SFI), as well as memory safe languages
such as Rust, bring different levels safety at a variable performance
cost. They should be selectively applicable on the components they
are the most meaningful for in a given use case.

(P4) Flexibility should not come at the cost of performance.
The OS runtime performance should be similar to what would
be achieved with any particular safety configuration without the
flexibility approach.

(P5) Compatibility with existing software should not come at
a high porting cost, to maximize adoption.

(P6) The user should be guided in the vast design space en-
abled by FlexOS. Given its very large configuration space, the
system should come with tools helping the user identify suitable
safety/performance configurations for a given use case.

2.2 Challenges and Approach

P1 and P4 raise the question of how to offer variable isola-
tion granularities, and how to do so without compromising
performance? Genericity is typically paid at the price of perfor-
mance [47, 61, 62], and interface design may not be easily decoupled
from the isolation granularity without performance loss [27]. In
order to tackle this issue, we propose to rely on a LibOS design
that is already finely modularized while providing state of the art
performance, Unikraft [47]. The main idea is to consider Unikraft’s
level of modularization (micro-library) as a minimal granularity,
using pre-existing interfaces as compartment boundaries. Then, in
order to maximize performance and safety for a given use case,
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less granular configurations can be composed by merging select
components into compartments. At build time when an isolation
mechanism is selected, FlexOS uses code transformations to inline
function-call-like cross-domain gates, avoiding the overhead of a
runtime abstraction interface [26].

P2 and P5 bring the challenge of how to design an OS in which
1) isolation can be enforced by many hardware mechanisms
and 2) the engineering cost of introducing a new mechanism
is low? Technology agnosticism is already difficult in userland soft-
ware, but core kernel facilities (interrupt handling, memory man-
agement, scheduling) introduce additional complexity that should
be handled very differently depending on the underlying isolation
technology. For example, some technologies share a single address
space between protection domains (e.g. MPK [15]) while other use
disjoint address spaces (e.g. TEEs [3], EPT). The main idea of FlexOS
is to abstract existing isolation technologies and identify kernel fa-
cilities that require different handling depending on the technology,
and design these subsystems so as to minimize the changes needed
when implementing a new technology.

P5 asks how to limit the engineering costs of porting new
applications/libraries? To allow compatibility with existing soft-
ware, FlexOS extends an OS that offers a POSIX interface. That
OS is compartmentalized by marking cross-component calls and
shared data using an abstract API and, in its basic form, porting a
new application requires the developer to use the same API to mark
shared data (i.e. data passed to other components) with source-level
annotations. This avoids the need to change the application de-
sign or major code rewriting. Such an approach is common among
state-of-the art compartmentalization frameworks [32, 65, 75, 80].

Finally, P1-P3 and P6 raise the question of how to help the user
navigate the vast design space enabled by FlexOS? The introduc-
tion of safety flexibility increases the potential for safety/performance
specialization, but selecting suitable configurations may be hard
for a non-expert. For example, it can be difficult to reason about
the safety implications of increasing the degree of compartmental-
ization vs. increasing the level of software hardening for a given
configuration. To tackle that issue, we propose a method named
partial safety ordering, using partial order relationships to proba-
bilistically rank FlexOS configurations by safety and identify the
safest ones for a given application under a performance budget.

Section 3 presents an OS design that satisfies P1-P5, and Section 4
gives key implementation points of a prototype we developed. Sec-
tion 5 shows an approach to tackle Pé6. Finally, Section 6 presents
an evaluation of our prototype.

3 DESIGNING AN OS WITH FLEXIBLE
ISOLATION

We now provide an overview of FlexOS’ main elements, starting
with an overview of its design, compartmentalization AP, the back-
end API, and finally the trusted computing base.

FlexOS is based on a modular LibOS, Unikraft [47] composed of
a set of independent, fine grained libraries. In FlexOS, each library
can be placed in a given compartment (an isolation domain), and
it can be hardened via techniques such as Control-Flow Integrity
(CFI), address sanitization and so forth. This safety configuration is
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Figure 2: OS overview. The TCB includes backends and core

libraries. Backends are used by the toolchain to rewrite the
libraries at build time.

provided at build time, in a configuration file provided by the devel-
oper, and FlexOS’ toolchain produces an OS image with the desired
safety characteristics. Below is an example of such a configuration
file that isolates libopenjpg and Iwip in a separate compartment
with CFI and ASan enabled.

compartments:
- compl:
mechanism: intel-mpk
default: True
- comp2:
mechanism: intel-mpk
hardening: [cfi, asan]
libraries:
- libredis: compl
- libopenjpg: comp2
- lwip: comp2

In contrast to Unikraft where all libraries are in the same pro-
tection domain and any library can directly call a function from
another library, in FlexOS’ source code libraries call external func-
tions via abstract gates, and may share data with external libraries at
the granularity of a byte using abstract code annotations. Gates and
annotations form an API used to compartmentalize Unikraft into
FlexOS, and represent metadata which is automatically replaced by
our toolchain with a particular implementation at build time. Differ-
ent implementations can leverage different isolation technologies,
or flavors of a same technology. We refer to the API implementation
for a given technology (MPK, EPT, etc.) together with its runtime
library as isolation backend. This subsection gives a short overview
of FlexOS’ main design elements, which are then elaborated in the
following subsections. Figure 2 depicts the components described
in this subsection.

LibOS Basis. Achieving flexible isolation at a fine granularity im-
plies a high degree of modularity. In practice, this modularity is not
offered by typical monolithic general-purpose OSes [47]. A flexible
isolation approach on the basis of Linux would require a first non-
trivial “modularization” step [55] that may take years of engineer-
ing and careful redesign. Library OSes [47] and component-based
OSes [10, 72] are a better starting point for flexible OS isolation
because they often provide highly modular code bases with good
application compatibility and high performance. Flexible isolation
also suits well the specialization spirit of LibOSes, where the OS
can be tailored for a given application/use-case. This was histori-
cally done for performance [24], and FlexOS enables specialization
towards safety.
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API and Build-time Instantiation. Unlike a typical LibOS, we de-
sign FlexOS in an isolation-agnostic manner. Cross compartment
calls are made through abstract call gates that are instantiated at
build time (arrows in Figure 2). Shared data is marked using com-
piler annotations, used at build time to instantiate a given data
sharing strategy. Unlike linker-based approaches [74], FlexOS per-
forms replacements using source to source transformations using
Coccinelle [48, 71]. This has the advantage of allowing all compiler
optimizations and gives FlexOS a clear performance advantage com-
pared to historical approaches that relied on heavyweight runtime
abstraction interfaces such as COM for Flux OSKit [26]. It also makes
FlexOS’ isolation approach easy to debug and understand by any-
one who knows C: transformations can be visually inspected in a
high-level language with usual file comparison tools.

3.1 Compartmentalization API and
Transformations

Most isolation mechanisms (memory protection keys [15], TEEs
like SGX [18], or hardware capabilities [82]) restrict data access
according to a set of current privileges, and provide a means to
switch privileges and share data across compartments. Ensuring
safety is equivalent to controlling privilege transitions, making sure
that the system only ever enters “legal” couplings of executing code
and data privileges. Other isolation approaches such as ARM Trust-
Zone [3] or EPT/VMs consider compartments as entirely different
systems (or “worlds”), enforcing a 1:1 system/compartment map-
ping. With this approach, systems never switch privileges, instead
they communicate with other compartments via remote procedure
calls (RPCs) and shared memory. We design FlexOS’ call gates and
data sharing primitives to cater for both approaches. In FlexOS, the
only requirement for an isolation mechanism is to (1) implement
the concept of protection domains and provide a domain switching
mechanism, and (2) support some form of shared memory for cross-
domains communication. To the best of our knowledge, this applies
to the vast majority of industry and research isolation mechanisms.
This subsection gives an overview of FlexOS’ compartmentalization
approach, first focusing on the API with call gates and shared data,
and then on build-time source transformations.

Call Gates. In FlexOS, cross-library calls are represented in the
source code by abstract call gates. At build time, as part of the trans-
formation phase, abstract call gates are replaced with a specific
implementation. For instance, when the caller and callee are config-
ured to be in the same compartment, call gates implement a classical
function call. When they are in different compartments, isolated
for example by MPK, the call gate performs a protection domain
switch before finally executing the call instruction. In a setting
where libraries are isolated using VMs, the call gate performs a
remote procedure call (RPC). From the perspective of the compiler,
caller, and the callee, call gates are entirely transparent as they
implement the System V ABI calling convention. Unlike typical
System V function calls however, call gates guarantee isolation of
the register set and therefore save and zero out all registers not
used by parameters. Figure 3 presents an example of gates from the
porting (step @) to the replacement by the toolchain (3 and 3).

The part of the process of porting existing user/kernel code to
FlexOS consisting in marking call gates is automated: knowing
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the control-flow graph of the system, static analysis determines
whether a procedure call crosses library boundaries, and if so, per-
forms a syntactic replacement of the function call with a call gate
instead. A corner case requiring programming effort is when a
component calls another component through a function pointer.
The callee cannot be determined statically, thus the programmer
must annotate the possible pointed functions with the list of possi-
ble components they can be called from. The toolchain will then
generate wrappers enclosing the implementations of the functions
in question in the appropriate call gates. Our prototype implemen-
tation uses Cscope [14] and Coccinelle [71].

FlexOS call gates are not trampolines. Instead, they replace Sys-
tem V function calls entirely and are always inlined at the call site.
An advantage of such approach is that call gates naturally provide
an inexpensive (albeit incomplete) form of CFI, guaranteeing that
libraries can only be entered through well defined entry points,
known and enforced at compile time.

Data Ownership Approach. FlexOS takes a code-centered [30]
isolation approach. Each library is present only once and maps to a
specific set of privileges. There is a slight tweak for backends that
rely on several systems (TrustZone, VMs): for them, the trusted
computing base (§3.3) is duplicated; one for each system, as each
compartment must possess a self-contained kernel (§4.2).

FlexOS considers all static and dynamic data allocated by a library
as private by default. Individual variables can then be annotated as
“shared” with a specific group of libraries into whitelists, similarly
to access control lists. In practice, the maximum number of isolated
data sharing “zones” is limited by the underlying technology. An-
notations are made with the keyword __shared as illustrated in
Figure 3 step @.

Compiler annotations are identical for all types of variables.
However, under the hood, FlexOS differentiates between statically
allocated variables, dynamically allocated heap variables, and dy-
namically allocated stack variables.

FlexOS’ compartmentalization API itself does not dictate how
variables have to be shared. Different mechanisms can require very
different sharing approaches: while certain mechanisms such as
MPK require shared data to be located in shared memory regions,
others such as CHERI’s hybrid capabilities [83] require compiler
annotations that can be automatically generated in place of the
FlexOS placeholder. Section 4 describes the implementation of the
API for the two supported backends (MPK/EPT), and sketches im-
plementations for an additional one (CHERI).

Identifying shared data represents the vast majority of the port-
ing effort. It is necessary for both kernel libraries, user libraries, and
applications. On the kernel side, this problem is simplified (but not
eliminated) by the modularity of Unikraft’s code base. This issue is
not specific to FlexOS and is widely explored in the literature. State
of the art approaches (1) rely on manual code annotations [65],
(2) perform static analysis at compile time to identify shared data
automatically [6], or (3) perform a mix of static, dynamic, and man-
ual analysis [30]. There is no silver bullet: manual code annotation
can be non-trivial, but typically produces precise results that not
only take into account what is accessed across modules, but also
what should be shared from a security perspective. Static-analysis



FlexOS: Towards Flexible OS Isolation

Semi automatic

/\ After porting

char errmsg[128] __shared(libc);

Before portin

char errmsg[128];

%iéxos_gate(libc, fprintf, stderr
"ERROR: %s", errmsg);

fprintf(stderr, "ERROR: %s",
errmsg);
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Figure 3: FlexOS code transformations. First, developers manually annotate shared data, and gate placeholders are automatically
inserted. At build time, API primitives are automatically replaced with the chosen mechanism. In the MPK case, shared data
can for example be allocated on a shared heap. If the two libraries are in the same compartment, the result is similar to the

code prior porting, resulting in zero overhead.

based approaches, on the other hand, are automatic, but conser-
vative. These methods would be applicable to FlexOS, however
automated shared data identification is not the main focus of this
paper. The current prototype relies on manual annotations, and
Section 4 details the porting effort for a number of applications and
libraries.

Build-time Source Transformations. Before compilation, FlexOS’
toolchain performs source transformations to (1) instantiate ab-
stract gates, (2) instantiate data sharing code, (3) generate linker
scripts, and (4) generate additional code in core libraries according
to backend-provided recipes. The amount code generated in con-
siderable. As an example, the toolchain modifies about 1 KLoC for
a simple Redis configuration. Figure 3 steps 3 and 3) presents an
example of the porting-transformation process.

3.2 Kernel Backend API

Most isolation mechanisms require changes to a specific set of com-
ponents in the kernel. The kernel facilities that can require special
handling depending on the technology exclusively correspond to
the core libraries (see Figure 2). In order to make such changes
scalable, we designed core components to expose a hook API to
isolation backends, allowing the core libraries to be easily extended
with backend specific functionalities. For example, the MPK back-
end leverages the thread creation hook offered by the scheduler
to switch a newly created thread to the right protection domain.
These hooks come at no cost: since the instantiation is done at build
time, the compiler is able to aggressively inline such calls.

Porting FlexOS to use a new isolation mechanism does not re-
quire redesign. In general, it is equivalent to (1) implementing
gates for the particular mechanism, (2) implementing hooks for
core components (see previous paragraph), (3) implementing linker
script generation in the toolchain, (4) implementing Coccinelle code
transformations, and (5) registering the newly created backend into
the toolchain. In practice, developers can heavily reuse existing
transformations for new backends.

3.3 Trusted Computing Base

Regardless of the isolation mechanism, certain components are so
deeply involved in the OS’ functioning that they will cause the
entire system to violate its safety guarantees when compromised.
These components are (1) the early boot code, (2) the memory man-
ager, (3) the scheduler, (4) the first-level interrupt handler’s context
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switch primitives, and (5) the isolation backend. We refer to these
components as FlexOS’ trusted computing base (TCB), illustrated
in Figure 2. Clearly, malfunctioning or malicious early boot code
can setup the system in an unsafe manner, the memory manager
can manipulate page table mappings in order to freely access any
compartment’s memory, the scheduler can manipulate sleeping
thread’s register states, and the backend provide incomplete iso-
lation, etc. This is the case even when considering architectural
hardware capabilities such as CHERI [21]. It comes as no surprise:
this “core” set of libraries is historically the set of services that
microkernel OSes provide [78]. FlexOS’ TCB is small: around 3000
LoC in the case of Intel MPK, and even less for VM/EPT.

Trust Model. The whole point of flexible isolation is to be able to
achieve a wide range of trust models where different components
(such as the network stack, parser libraries, etc.) can be considered
untrusted and potentially compromised. Thus there is no single
trust model for FlexOS. In general, however, we assume that the
TCB (see previous paragraph) is safe and error free. This is not an
unreasonable assumption given the small size and the potential
for formal verification (we have formally verified a version of our
scheduler [50] using Dafny [51]). The hardware and the compiler
are also part of the TCB. Note that the rest of the toolchain (Coc-
cinelle included) is not part of the TCB as the code includes compile
time checks that are able to detect invalid transformations. Finally
we must also assume that interfaces correctly check arguments
and are free of confused deputy/Iago [13] situations. This is not an
unreasonable assumption within the core FlexOS codebase. Further,
confused deputy and Iago attacks are probabilistically made more
complex to execute in FlexOS due to the variability of the interface
size; the system call API, for example, is divided into a variable
number of sub-interfaces depending on the chosen configuration,
and several compartments may need to be subverted for an attack
to be successful.

4 PROTOTYPE

We present a prototype of FlexOS on top of Unikraft [47] v0.5, with
Intel MPK and EPT backends. Modification to the Unikraft kernel
represent about 3250 LoC: 1400 for the MPK backend, 1000 for
EPT, and 850 for core libraries. In user space, changes to Unikraft’s
toolchain represents 2300 LoC. We port user codebases (Redis, Ng-
inx, iperf, and SQLite) as well as most kernel components (the
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TCP/IP stack, scheduler, filesystem, etc.) to run as isolated compo-
nents. This section presents the MPK and EPT backends, sketches
a CHERI backend, and concludes with the porting effort.

4.1 Intel MPK Isolation Backend

MPXK is a mechanism present in Intel CPUs offering low-overhead
intra-AS memory isolation [5, 37, 75]. MPK leverages unused bits
in the page table entries to store a memory protection key, enabling
up to 16 protection domains. The PKRU register then stores the
protection key permissions for the current thread. On each mem-
ory access, the MMU compares the key of the target page with the
PKRU and triggers a page-fault in case of insufficient permissions.
FlexOS associates each compartment with a protection key and
reserves one key for a shared domain used for communications. If
the image features less than 15 compartments, FlexOS uses remain-
ing keys for additional shared domains between restricted groups
of compartments. Any compartment can modify the value of the
PKRU, thus the MPK backend has to prevent unauthorized writes.
This has previously been done via runtime checks [32] and static
analysis [80]. In FlexOS, no code is loaded after compilation, hence
static binary analysis coupled with strict WX is sufficient.

MPK Gates. For flexibility, FlexOS offers two different implemen-
tations of the MPK gate. The main one provides full spatial safety,
similarly to HODOR [32]. The gate protects the register set and
uses one call stack per thread per compartment. Each compartment
has a stack registry that maps threads to their local compartment
stack, making it fast and safe to switch the call stack. Upon domain
transition, the gate (1) saves the current domain’s registers set,
(2) clears registers, and (3) loads function arguments. It then (4)
saves the current stack pointer, (5) switches thread permissions,
(6) switches the stack, and finally (7) executes the call instruction.
Once the function has returned, operations are executed in reverse.

The second gate implementation shares the stack and the register
set across compartments, similarly to ERIM [80]. It is conceptually
very simple, switching the content of the PKRU before performing a
normal function call. This lightweight implementation offers lesser
guarantees but presents a lighter overhead, close to the raw cost of
wrpkru instructions.

Data Ownership. FlexOS” MPK images feature one data, read-
only data, and bss section per compartment to store private com-
partment static data. At boot time, the boot code protects these
sections with the compartment’s protection key.

Each compartment has a private heap, and a shared one is used
for communications. Our prototype uses a single shared heap for all
shared allocations, but this is not a fundamental restriction. Stack al-
locations are slightly more complex. Existing works convert shared
stack allocations to shared heap allocations [6, 32, 44]. This ap-
proach is costly from a performance perspective: an allocation+free
on the fast path for a modern allocator typically takes 30-60 cycles,
and up to thousands of cycles on the slow path [40]. This is as
expensive as entire domain transitions, and that for a single shared
stack variable. While FlexOS supports stack-to-heap conversions,
we propose another approach that addresses this issue, the data
shadow stack.
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Figure 4: Data Shadow Stacks.

Data Shadow Stacks. Stack allocations are much faster than heap
allocations because the compiler is able to perform bookkeeping
at compile time. At runtime, a single push instruction is needed,
resulting in constant low cost. Data Shadow Stacks (DSS), illus-
trated in Figure 4, leverage this bookkeeping work for shared stack
allocations.

When using the DSS, the usual stack size of threads is doubled.
The upper part corresponds to the DSS and is put in the shared
domain. The lower part is the traditional stack and remains in
the compartment’s private domain. For each shared variable x, we
define the shadow of x as & + STACK_SIZE. Thus, allocating space
for a shared variable on the stack transparently allocates a shadow
variable in the DSS. Before compilation, the toolchain replaces
every reference to a shared stack variable with its shadow *(&var
+ STACK_SIZE) in the shared domain.

Allocations on the DSS are much faster than on a shared heap,
since the DSS’ bookkeeping overhead is null (stack speed), and the
locality of reference high. The cost is a relatively small increase in
memory usage (stacks are twice as large). The DSS mechanism is ap-
plicable to any isolation mechanism that supports shared memory,
and is compatible with common stack protection mechanisms.

Control Flow Integrity. Intel MPK does not provide protection
from execution. As such, if a compartment is compromised and the
attacker ROPs into another compartment, a fault will not directly
happen. The MPK backend is able to provide a certain form of CFI,
ensuring that compartments can only be entered at well-defined
points. This ability is the consequence of the hardcoding of gates as
described in 3.1. If the control-flow of one compartment is compro-
mised and the attacker ROPs directly into another compartment
¢, then the system is guaranteed to crash if any data local to c is
accessed.

4.2 EPT/VM Backend

Virtualization has been used in many works to support isolation
within a kernel [53, 67, 68, 84]. Hardware-assisted virtualization
is widely supported and provides strong safety guarantees com-
pared to MPK, at the cost of higher overheads. The EPT backend
is an extreme case; compartments do not share ASes and run on
different vCPUs. It shows that FlexOS is able to cater very different
mechanisms under a common APL

FlexOS’ EPT backend generates one VM image per compart-
ment, each containing the TCB (boot code, scheduler, memory
manager, backend runtime) and the compartment’s libraries. Com-
munications use a shared memory-based RPC implementation. Our
prototype runs on QEMU/KVM patched to support lightweight
inter-VM shared memory (less than 90 LoC).
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EPT Gates. Upon domain transition, the caller places a function
pointer and arguments in a predefined shared area of memory. All
other VMs busy wait until they notice an RPC request, check that
the function is a legal API entry point, execute the function and
place the return value in a predefined area of the shared memory.
In order to support multithreaded loads, each RPC server maintains
a pool of threads that are used to service RPCs. Using function
pointers instead of abstract routine identifiers simplifies the RPC
server’s unmarshalling operation and does not prevent the RPC
server from checking the pointer to ensure that it is a legal entry
point. This optimization is possible since all compartments are built
at the same time, hence all addresses are known.

Busy-waiting allows the EPT backend to minimize gate latency
as opposed to VM notifications, but a similar implementation with
MONITOR/MWAIT instructions would also be possible to minimize
power consumption if calls are sparse. Overall, any of these tweaks
can be implemented as gate variant in order to offer as much free-
dom as possible to the user.

Data Ownership. The EPT backend relies on shared memory
areas to share data (static and dynamic) across VMs. Areas are
always mapped at the same address in the different compartments
so that pointers to/in shared structures remain valid. Each VM
manages its own portion of the shared memory area to avoid the
need for complex multithreaded bookkeeping.

Control Flow Integrity. The EPT backend is able to provide a form
of CFI stronger than that of the MPK backend, ensuring that com-
partments can only be left and entered at well defined points. Indeed,
the RPC server can control at entry that the executed function is le-
gal, and compartments are not able to execute other compartments’
code without RPC calls.

4.3 Supporting More Isolation Mechanisms

To check whether FlexOS can support other isolation backends, we
discuss how we can leverage the CHERI hardware capabilities [82],
an emerging isolation hardware mechanism. The CHERI ISA ex-
tension is available for ARMv8-A, which is supported by FlexOS.
Among others, CHERI capabilities would extend FlexOS’ trade-off
space with the ability to address confused-deputy situations, reduce
data sharing, and allow for a larger number of domains, something
that is currently impossible for architectural (MPK) and perfor-
mance (EPT) reasons. The backend would use boot-time hooks to
initialize CHERI support, and scheduler hooks to perform capability-
aware context-switching and thread initialization. Similarly to other
backends, CHERI gates would save caller context, clear the rele-
vant traditional and capability registers, install the callee context,
and rely on the domain crossing instruction CInvoke and sentry
capabilities [81] to perform protection domain jumps. As a first
step, FlexOS should rely on the hybrid pointer model to maximize
compatibility. Our API’s shared data annotations would transform
to __capability at build time to treat shared variables as a capa-
bilities for efficient communications.

4.4 Porting Effort

The porting process consists of two phases: call gate insertion (auto-
mated), and shared data annotation (manual). The typical workflow,
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Table 1: Porting effort: size of the patch (including automatic
gate replacements), number of shared variables.

LiBs/Aprps [ PaTCH s1zE [ SHARED VARS
TCP/IP stack (LwIP) +542/-275 | 23

scheduler (uksched) +48 /-8 5

filesystem (ramfs, vfscore) | +148/-37 12

time subsystem (uktime) +10/-9 0

Redis +279/-90 16

Nginx +470 /-85 | 36

SQLite +199/-145 | 24

iPerf +15/-14 4

once gates have been inserted, is to run the program with a repre-
sentative test case (e.g., a benchmark or test suite) until it crashes
due to memory access violations. Crash reports point to the symbol
that triggered the crash, at which point the developer can annotate
it for sharing. In some cases, the crash can be a genuine violation;
e.g., a library exposes internal state to external libraries, in which
case the developer can decide to rework the library’s API to address
the privacy issue. This case is much less frequent and left at the
developer’s discretion. An example is ramfs, which is so deeply
entangled with vfscore that blindly isolating it without redesign
would impair performance with little additional security benefits,
as a critical portion of the component’s state would be shared. How-
ever, coupled with vfscore, both components can perfectly well be
isolated from the rest of the system. This highlights a limitation of
automated tools that blindly isolate this component [74]. Overall,
the porting process is greatly simplified by common debugging
tools: GDB and all usual debugging toolchains are supported. The
debugging experience in FlexOS is not significantly different from
Unikraft and most mainstream OSes, and we expect it to remain in-
tuitive for anyone familiar with OS development. Depending on the
amount of data shared with the outside world, the porting process
ranges from 10 minutes (time subsystem, no data shared), to 2-5
days (filesystem, network stack). This porting cost is similar that
of other compartmentalization frameworks [65]. Table 1 illustrates
the porting effort with concrete numbers.

4.5 Software Hardening

The flexible isolation provided by FlexOS allows to enable/disable
software hardening (SH) such as CFI, etc., on a per-component basis:
isolating components without SH from components with it allows
the latter to maintain the guarantees offered by SH. Moreover,
many SH schemes work by instrumenting the memory allocator,
and we use FlexOS’ capacity to have an allocator per-compartment
to enable flexible SH. This flexibility allows for example to alleviate
the performance impact of SH by enabling it only for a subset of the
system. Our prototype currently uses address sanitization (KASan),
undefined behavior sanitization (UBSan), CFI, and stack protector.

5 EXPLORATION WITH PARTIAL SAFETY
ORDERING
In this section we present a design space exploration technique,

partial safety ordering, that aims to guide a user towards suitable
configurations for a given use case by subsetting the vast design
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Figure 5: Partial view of the configuration poset for a
fixed compartmentalization (2 compartments), varying per-
compartment software hardening (CFI/ASAN).

space enabled by FlexOS according to safety and performance re-
quirements.

Given a performance budget, partial safety ordering attempts
to find the most secure configurations among those enabled by
FlexOS. Quantifying safety is challenging: it is impossible to give
each configuration an absolute safety score that would allow to
completely order them; for instance, is the safety of a configuration
with 3 compartments, MPK isolation and no hardening better or
worse than another one with 2 compartments, EPT isolation and
CFI hardening?

Nevertheless, the safety of some configurations is programmati-
cally comparable. Consider 3 configurations, C1 with no isolation
and no software hardening; C2 with two compartments protected
by a given mechanism with a given data sharing strategy and no
hardening; and C3 adding CFI for each compartment on top of C2.
In terms of (probabilistic) safety, we have the following relationship:
C1 < C2 < (3. With that in mind, it is thus possible to organize
all configurations into a partially ordered set (poset), that can be
viewed as a Directed Acyclic Graph (DAG) for which each node
represents a configuration, and a directed edge between nodes n1
and n2 indicates that the level of safety of n1 is probabilistically
superior to that of n2. The safety of nodes on the same path is
comparable, while that of nodes on different paths is not.

Figure 5 presents a subset of the configuration poset correspond-
ing to fixed choices for a compartmentalization strategy with 2
compartments, an isolation mechanism, and a strategy of data shar-
ing. This subset of the poset represents the variation of the last
feature, the software hardening, for which we assume only CFI and
ASAN for the sake of simplicity. Each configuration is depicted by
a node indicating, for each of the two compartments, which hard-
ening mechanism is applied: none, CFI, ASAN, and CFI+ASAN. We
construct the poset partially depicted on Figure 5, ordering safety
with the assumption that safety probabilistically increases with 1)
the number of compartments; 2) data isolation (isolated vs. shared
stacks, dedicated shared memory areas per pair of communicating
compartments vs. shared areas accessible from everywhere, etc.); 3)
stackable software hardening; and 4) the strength of the isolation
mechanism.

Given such a poset, we can label each node with its performance
characteristics (circles in the figure denote fictional performance
numbers), and prune those that don’t meet minimum requirements
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(gray nodes), ultimately yielding a set of configurations that offer
the best guarantees for a given performance budget. This set corre-
sponds to the maximal elements of the poset, i.e. sinks of the DAG
(green nodes in the figure).

Partial Safety Ordering in Practice. In practice, users provide
the toolchain with a test script (e.g., wrk for Nginx) and a perfor-
mance budget (e.g., at least 500k req./s). Users are free to define
performance as they may deem suitable depending on their needs:
application throughput, tail latency, runtime, etc. Any metric is
suitable as long as it remains comparable across configurations and
runs. With this in hand, the toolchain generates the unlabeled poset.
Then, it labels it by automatically measuring the performance of
each configuration. The toolchain does not have to run all con-
figurations: assuming monotonically decreasing performance, it
can safely stop evaluating a path as soon as a threshold is reached.
In practice, we observe that this significantly limits combinatorial
explosion. The result is a set of the most secure configurations
for the given budget, which the user can use to choose the most
suitable one for a given use case. Ultimately, we expect this process
to significantly trim the design space and allow the user to make
an informed and relatively effortless choice.

This approach assumes that the user is able to get representative
feedback on the application’s performance, and users will not be
able to use FlexOS’ exploration facilities if they are not able to
properly benchmark their application. However, we expect this
situation to be quite rare: in the vast majority of cases, users will
be able to at least minimally test their applications. These results
can be used to exclude configurations that are too costly and test
the best candidates in production using lightweight performance
measurement systems, e.g., blue-green deployments.

Skipping Exploration. Some developers might already come with
a particular isolation strategy in mind. In that case the developer
can skip this exploration phase by providing a configuration file as
shown in Section 3. In this case, the developer leverages FlexOS’
flexibility and not its exploration facilities. We note, however, that
this “expert” approach has its limits: applications evolve over time
and a compartmentalization approach that is deemed optimal at a
given time may not be suitable in the future [30]. In this case, an
exploration system such as FlexOS’ can be of use for the expert to
easily reconsider their approach in light of changing software.

6 EVALUATION

We aim to demonstrate the vast performance/safety design space en-
abled by FlexOS, assess the efficiency of the partial safety ordering
exploration technique, and compare FlexOS’ performance with the
literature. To this end, we present an overview of the performance
obtained with numerous safety configurations on three popular
cloud applications (Redis, Nginx, and SQLite), as well as iPerf, a
standard network stack benchmark. We demonstrate our design-
space exploration technique with Redis and Nginx. Then, we com-
pare selected SQLite configurations with Linux, CubicleOS [74], a
(non-flexible) compartmentalized LibOS, the SeL4 [45]/Genode [25]
microkernel, as well as Unikraft [47]. Finally, we study raw isolation
overheads in FlexOS: DSS efficiency and cross-compartments call
gate latencies.
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Figure 6: Redis (top) and Nginx (bottom) performance for a range

of configurations. Components are on the left. Software

hardening can be enabled [e] or disabled [o] for each component. The white/blue/red color indicates the compartment the
component is placed into. Isolation is achieved with MPK and DSS.

We run experiments on an Intel Xeon Silver 4114 @2.2 GHz. For
each experiment we use 4 cores from the same socket, isolated with
isolcpu: 2 cores for the client (iPerf client/redis-benchmark, wrk)
on the host, 1 core for the QEMU process, and 1 core per FlexOS’
vCPU. Hyperthreading is disabled.

6.1 Design Space Exploration: Redis, Nginx

We automatically generate and run a large set of configurations for
Redis and Nginx using the Wayfinder [38] benchmarking platform.
We fix the isolation mechanism to MPK with DSS and vary: the num-
ber of compartments (1-3), compartmentalized components (TCP/IP
stack, libc, scheduler, application), as well as per-compartment soft-
ware hardening (stack protector, UBSan and KASan), for a total of
2x80 configurations.

Redis. The results are on Figure 6 (top), plotting for each con-
figuration Redis’ GET throughput. Overall we observe that FlexOS
enables for a very wide range of safety configurations with signif-
icant performance variation: there is one order of magnitude of
difference between the configuration yielding the lowest through-
put (292K req/s) vs. the highest one (1.2M req/s).

Unsurprisingly, the configuration that disables isolation and
hardening gives the highest throughput. Conversely, configura-
tions with many compartments/hardening perform worst. Still, in
between these two extremes, creating more compartments and
enabling hardening has a variable impact on performance. For ex-
ample, with two compartments and no hardening, isolating LwIP
from the rest of the system leads to an 11% performance hit, while
that number reaches more than 43% when the scheduler is the iso-
lated component — indicating extensive communication between
user code and the scheduler. The same is true for hardening: with
a single compartment, enabling hardening on the scheduler has a
24% performance cost, while that cost is 42% when hardening the
Redis application code.

The complexity of maximizing safety and performance becomes
more clear when isolating several components: isolating LwIP from
the scheduler from the rest only differs from a few percentage
points from isolating LwIP together with the scheduler from the
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Figure 7: Nginx versus Redis normalized performance.

rest. Such “isolation for free” effects are caused by communication
patterns; LwIP does not directly communicate with the scheduler,
hence the “cut” is not on a hot path, and merging them in a same
compartment brings little performance benefits. Thus, the perfor-
mance does not entirely depend on the number of compartments
or the number of components with hardening enabled, but rather
what particular components are isolated/hardened, and their com-
munication patterns. Such effects can be leveraged to maximize
safety and performance.

Nginx. The results are on Figure 6 (bottom), plotting for each
configuration Nginx’ HTTP throughput. Overall we observe that
results span over the same range of overhead as Redis (0-4.1x).
However, overheads do not follow the same distribution: 9 con-
figurations have less than 20% overhead in the Nginx case, but
only 2 for Redis. Similarly, 32 configurations have less than 45% of
overhead, only 20 for Redis. This can be explained by looking more
closely at individual configurations. Compared to Redis, isolating
the scheduler is much less expensive (6% versus 43% for Redis),
and the same goes for hardening (2% versus 24% for Redis). The
costs, however, become similar as more hardening and isolation
boundaries are added because of bottleneck effects.

This different distribution of costs is made more clear by Figure 7
which compares the relative performance of configurations for Ng-
inx and Redis (same dataset as Figure 6). These differences show that
isolating and hardening the same components on two networked
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Figure 8: Configurations poset for the Redis numbers (Fig-
ure 6). Stars are the most secure configurations with perfor-
mance >= 500k requests/s.

applications results in uneven, difficult to predict slow-down. Ex-
isting approaches assume a one-size fits all safety configuration
are therefore suboptimal; in contrast, FlexOS enables users to eas-
ily navigate the safety / performance trade-off inherent in their
application.

6.2 Partial Safety Ordering

We applied this technique on the Redis numbers from Figure 6.
We construct the poset presented in Figure 8, where each node
is a Redis configuration, i.e. a column from Figure 6. The node’s
color intensity indicates the configuration’s performance, black
being the fastest (1.2M req/s) and slower configurations becoming
gradually white (pure white representing 292K req/s). The fastest
configuration is the one with no isolation and no hardening (&) on
Figure 8). Other nodes in the center of the plot represent compart-
ments addition, still with no hardening: separating from the rest
of the system either the scheduler ®, lwip ©, or Redis+newlib @,
and a 3 compartments scenario ). From these 5 basic compart-
mentalization strategies come out 5 “branches”. The nodes in each
branch represent various combinations of per-component software
hardening. The nodes’ color evolution indicate the variable perfor-
mance impact of creating new compartments and stacking software
hardening on components.

We set a minimum required performance of 500K req/s, and let
partial safety ordering identify the safest configurations satisfying
that constraint, indicated with stars on Figure 8. In this case, the
technique can prune the configuration space from 80 to 5 configu-
rations, helping the user easily pick the most appropriate one.

6.3 Batching Effects: Network Stack
Throughput

We port a simple iPerf server to FlexOS and use it to measure the
network performance of our system. We fix the compartmentaliza-
tion to the following scenario: the iPerf application code is placed
within a compartment, and the rest of the system (including the
network stack) is placed in a second compartment. We apply no
software hardening, and configure the iPerf server to pass buffers
of varying sizes when calling recv on the socket. We measure the
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Figure 9: Network stack throughput (iPerf) with Unikraft
(baseline), FlexOS without isolation, with two compartments
backed by MPK (-light = shared call stacks, -dss = protected
and DSS), and with two compartments backed by EPT.
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Figure 10: Time to perform 5000 INSERT queries with SQLite
on Unikraft, FlexOS, Linux, SeL4 (with the Genode system),
and CubicleOS. The isolation profile is shown on the x axis
(NONE: no isolation, MPK3: MPK with three compartments,
EPT2: two compartments with EPT, PT2/3: two/three com-
partments with page-table-based isolation).

achieved throughput using an iPerf client for FlexOS without iso-
lation, with MPK (sharing or protecting the call stack), as well as
EPT. We run vanilla Unikraft as baseline.

The results are on Figure 9. FlexOS without isolation performs
similarly to Unikraft, confirming that users “only pay for what they
get”. FlexOS’ isolation slowdown manifests for small payload sizes,
for which the domain crossing latency is an important bottleneck
in the request processing time. Depending on the buffer size, EPT
isolation is 1.1-2.2x slower than MPK with DSS, which is itself 0-
1.5x slower than the baseline without isolation. MPK with shared
stacks bears a 0-1.3x slowdown. Although MPK with DSS pays the
price of a stack switch (see Table 11b), it is more secure than fully
sharing the stack and still faster than fully isolating it while moving
shared data to the heap (see Figure 11a). Batching effects clearly
manifest as the payload size increases: MPK’s performance quickly
becomes similar to to baseline starting from 128 B. EPT’s isolation
being more costly, the payload size needs to be 256 B or above so
that its performance to reach about 90% of the baseline’s. These
results illustrate that, depending on the size of the payload and the
frequency of domain crossings, all backends can constitute a valid
solution to a given problem.
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6.4 Filesystem Intensive Workloads: SQLite

We evaluate the performance of FlexOS with filesystem intensive
workloads and compare it to vanilla Unikraft, Linux, SeL4 [45]
with the Genode [25] system, and CubicleOS [74]. Although both
FlexOS and CubicleOS extend Unikraft, the former runs in a stan-
dard Qemu/KVM VM while the latter is implemented on top of
linuxu, Unikraft’s Linux userland debug platform. The Unikraft
baseline number thus cover both cases. We evaluate two scenar-
ios: one with two components (EPT2, PT2), where the filesystem
is isolated from the application, and one with three components
(MPK3, PT3), where the filesystem is isolated from the time sub-
system from the rest of the system. This benchmark performs 5000
INSERTSs queries sequentially. To increase pressure on the filesys-
tem, each query is in a separate transaction. The results are shown
in Figure 10.

Compared to the baseline, FlexOS without isolation adds no
overhead, and MPK3 adds an overhead of 2x. This is still signif-
icantly faster than the userland Linux version which performs a
large number of system calls, highlighting the benefits of the LibOS
basis. Somewhat surprisingly, FlexOS with EPT2 performs almost
identically to Linux. This is because the syscall latency is almost
identical to the EPT2 gate latency on this system (see Figure 11b).
Compared to SeL4, FlexOS is 3.1x faster with MPK3, and 2x faster
with EPT2.

Compared to CubicleOS, FlexOS is an order of magnitude faster.
This is due to (1) CubicleOS relying on linuxu, i.e. running in Ring
3 and performing Linux system calls for privileged operations, (2)
CubicleOS not implementing MPK support and relying on Linux
pkey_mprotect system calls (making domain transitions orders of
magnitude more expensive and the TCB thousands of times larger),
and (3) CubicleOS’ trap-and-map approach (that FlexOS avoids with
shared data annotations). Even compared to its baseline without
isolation, CubicleOS with MPK3 adds an overhead of 2.4x, about
30% more than FlexOS. CubicleOS without isolation is faster than
the Unikraft linuxu baseline; this is because it uses the Lea [49]
memory allocator which behaves better than Unikraft’s TLSF [63]
allocator in this benchmark.

6.5 Overheads: Stack Allocations, Gate Latencies

In FlexOS, stack data can be shared via heap allocations, using the
DSS (trading space for performance), or sharing the stack entirely
(trading safety for performance). To illustrate the benefits of the
DSS, we measure, for each of the mechanisms, the execution time
of a function that allocates 1 to 3 shared stack variables (size 1 Byte)
and returns immediately.

The results are on Figure 11a. Heap-based stack allocations are
one to two orders of magnitude (100-300+ cycles) slower than typi-
cal stack allocations (constant 2 cycles). This is not surprising, since
general-purpose allocators typically feature unbounded execution
time. This cost increases with the number of variables, since each
variable triggers a separate call to malloc. The DSS matches the
shared stack in performance, confirming that it combines the safety
of isolation with the performance of traditional stack allocations.
The memory footprint increase due to the DSS is modest as FlexOS
uses small stacks (8 pages). For example, an instance with Redis (8
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Figure 11: FlexOS latency microbenchmarks.

threads), has a space overhead of 288 KB. The DSS is a data sharing
strategy and does not remove the need to perform stack switches.

Another source of compartmentalization overhead is gate latency.
To illustrate the raw performance of FlexOS’ gates we measure the
gate latency of MPK stack-sharing gates (-light), normal MPK gates,
and EPT gates. We compare them with the latency of a function
call, and of a Linux system call (with and without KPTI, -nopkti).
The results are shown in Figure 11b. MPK light gates are 80% faster
than normal MPK gates, and 7.6x faster than EPT gates, as they
correspond to the cost of raw wrprku instructions. EPT latencies
are similar to syscall latencies without KPTI, illustrating the practi-
cability of the EPT backend.

7 USE CASES FOR ISOLATION FLEXIBILITY

FlexOS enables developers to seamlessly experiment with various
safety configurations for their OS. An obvious use-case we pre-
sented throughout this paper is the specialization of the OS’ safety
strategy for a given application: manually or semi-automatically
selecting, among the vast design space unlocked by FlexOS, the
most suitable configuration for a particular use case with given
safety/performance constraints. Still, there are many other ways in
which this flexibility can be used; we detail some of them next.

Quickly Isolate Exploitable Libraries. Consider the period be-
tween the full disclosure of a vulnerability and the release of its fix,
or the embargo period when vulnerabilities are disclosed only to
affected vendors, but not to the general public; these periods can
last for weeks up to years during which vulnerable software runs in
the wild. With FlexOS, it takes seconds to create a new binary that
isolates a vulnerable library into its own compartment (e.g. EPT +
hardening) to at least mitigate the effects of exploits; an automated
system could be created to respond to known vulnerabilities by
recompiling production software to isolate certain libraries, similar
to Self-Certifying Alerts [17]. Such flexibility improves over the
state of the art by avoiding a loss of functionality (e.g. compared
to Senx [35]), and providing excellent resistance to polymorphic
variations of vulnerabilities (e.g. compared to filters [16]).

Quickly React to Hardware Protections Breaking Down. Recent
hardware vulnerabilities [46, 56] showed that hardware-backed
isolation mechanisms are not foolproof. The corresponding fixes
may require significant engineering and redesign efforts (e.g. KPTI
for Meltdown), leading to long vulnerability windows. FlexOS is
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not immune to hardware vulnerabilities by design. In this case,
however, its ability to easily switch between protection techniques
comes handy: by supporting a wide range of isolation primitives
relying on a range of different hardware, switching the isolation
mechanism from a vulnerable to a non-vulnerable one is just a mat-
ter of rebuilding the LibOS with a different configuration (snippet
in §3), i.e. the engineering cost is nil.

As Secure as You can Afford. Consider a service provider who
wishes to offer the best possible security as long as its server can
keep up with the client load. A natural approach would be to run
the safest combination that copes with peak load, as we suggested
in our Redis evaluation; this means that in periods of low load the
system has idle compute power.

With its capacity to quickly switch safety configurations, FlexOS
enables another approach: to run, at any time, the safest configu-
ration that can sustain the actual load. This makes attacks much
harder as long as the system is under-loaded, but gracefully switches
off defenses as load increases to respect SLA. Another approach is
to couple this with software load balancers to triage users into likely
benign or malicious, sending them to machines running faster or
safer software, accordingly.

Dealing with Crashed Software. Vulnerabilities are a fact of life,
and the standard approach is to quickly restart crashed software
and to examine the faults in the background. When such a crash is
detected (e.g. memory error), with FlexOS it is wiser to start a safer
configuration of the same software, to ensure that any vulnerability
is not turned into an exploit.

Incremental Verification. Individual components of FlexOS can
be verified and isolated from the rest of the system. In this way,
one can obtain strong guarantees on pre-conditions and ensure
that verified properties hold even when mixed with unverified
components, something that isn’t possible with monolithic opera-
tions systems [55]. Over time, the entire system could be verified,
gradually increasing the guarantees of the system.

Deployment to Heterogeneous Hardware. The flexibility of FlexOS
mechanisms can also come in very handy when deploying on het-
erogeneous hardware. Some servers might offer MPK support for
example, others CHERI, others only the classical MMU. In every
case, Chrysalis is able to get the best from the available hardware
without major rewrite, and without requiring insider knowledge
from application developers.

8 RELATED WORK

Improving OS safety. Previous work proposed to address the
safety issues of monolithic OSes by reducing the TCB through sep-
aration [2, 73], micro-kernels [28, 34], and safe languages [7, 19, 36,
58, 66]. In SASOSes, internal isolation may be traded off for perfor-
mance [41, 43, 47, 70], provided with traditional page tables [12, 33,
52, 68], or intra-AS hardware isolation mechanisms [54, 69, 74, 76].
Other research efforts strive to speedup IPC in microkernels [29, 64],
or redesign monolithic OSes entirely [9, 11, 20, 31, 53, 67, 77].
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Overall, each of these approaches is a single or a few point(s)
in the OS safety/performance design space and lacks the flexi-
bility of FlexOS to automatically specialize for safety or perfor-
mance. LibrettOS [68] allows a LibOS to switch between SASOS
and microkernel modes, but remains limited to a small subset of
the safety/performance design space.

Compartmentalization Frameworks. Several compartmentaliza-
tion frameworks have been proposed recently [6, 30, 32, 57, 65,
74, 75, 80]. Contrary to FlexOS, none focuses on flexible isolation.
Regarding application porting, most [32, 65, 75, 80] rely on code
annotations. A few studies provide various degrees of porting au-
tomation through data flow analysis [6, 30, 57], but are typically
bound to numerous limitations due to the complexity of breaking
down monolithic code bases. Nevertheless, some of their principles
can be applied to increase the degree of automation of FlexOS’
porting process — something we scope out as future works. Cubi-
cleOS [74] proposes a trap and map mechanism to limit the porting
effort, but this comes at a high cost, is specific to MPK, and is not
entirely automated. Further, as shown in our evaluation, CubicleOS’
reliance on Unikraft’s linuxu leads to suboptimal performance.

9 CONCLUSION

The isolation strategy of today’s OSes is mostly fixed at design
time. This lack of flexibility is problematic in many scenarios. We
propose FlexOS, an OS whose isolation strategy is decoupled from
its design. We augment the historical capacity of the LibOS to
specialize towards performance with the ability to specialize for
safety: fundamental decisions such as the compartmentalization
granularity and which isolation mechanism to use are deferred to
build time. FlexOS ships with a semi-automated exploration strategy
helping the user navigate the vast configuration space the system
unlocks. FlexOS is available online at https://project-flexos.github.io
under an open source license.

In our future work, we intend to add more isolation backend
implementations to FlexOS including CHERI and SGX, as well as
support for more software hardening techniques. Another direction
of future work is to create a formal basis to help users navigate
the safety configuration space. This would enable, among others,
embedding formally verified components in FlexOS configurations
while preserving their proven properties.
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A ARTIFACT APPENDIX
A.1 Abstract

This artifact contains the source code of FlexOS, the proof-of-
concept of our flexible isolation approach, along with all scripts
necessary to reproduce the paper’s measurements and plots. The
goal of this artifact is to allow readers to reproduce the paper’s
results, and build new research on top of FlexOS.

A.2 Artifact Check-List (Meta-Information)

e Program: the FlexOS library OS, benchmarked with standard appli-
cation benchmarks (wrk and redis-benchmark), a custom SQLite
benchmark, and custom microbenchmarks.

Binary: automatically built from source.

Run-time environment: GNU/Linux Debian 11 (Bullseye), with
KVM and Docker. Other dependencies are automatically installed.
Hardware: Intel® Xeon® Silver 4114 @ 2.20 GHz, or any machine
with more than 8 cores that supports Intel MPK, typically Intel®
Xeon® Scalable Processors starting with the Skylake generation. At
least 128.0 GB of RAM.

Metrics: requests/s, Gb/s, queries/s, execution time, gate latencies.
e Output: performance data, FlexOS images.

Experiments: Figures 6, 7, 9, 10, 11a and 11b are reproducible
automatically. Figure 8 is reproducible manually (it is only a graph).
Table 1 is also reproducible manually.

How much disk space required (approximately)?: 100.0 GB
How much time is needed to prepare workflow (approxi-
mately)?: 6-12 Hours (automated).

e How much time is needed to complete experiments (approxi-
mately)?: 4-5 Hours (automated), and up to 1.5 Hours (manual).
Publicly available?: Yes.

Code licenses (if publicly available)?: BSD-3-clause.
Workflow framework used?: Wayfinder [38], Docker, scripts.
Archived (provide DOI)?: 10.5281/zenodo.5748505

A.3 Description

A.3.1 How to Access. The latest version of the artifact can found on
GitHub!. Alternatively, individual releases can be downloaded from
our Zenodo archive?. Note that the artifact evaluation (AE) GitHub
repository only contains part of the artifact, namely scripts to re-
produce this paper’s experiments. The core of FlexOS, libraries, and
applications, are all available in the project-flexos organization,
as documented in the AE repository.

In order to precisely reproduce this paper’s measurements, we
gave ASPLOS’22 reviewers access to our server, an Intel® Xeon®
Silver 4114 with 128.0 GB RAM, Debian 11.1, and Linux version
5.10.70-1. Nonetheless, access to this particular setup is not re-
quired to run this artifact; hardware and software dependencies are
detailed further below.

A.3.2 Hardware Dependencies. An Intel® Xeon® Silver 4114 @
2.20 GHz, or any machine that supports Intel MPK, typically any
Intel® Xeon® Scalable Processor starting with the Skylake genera-
tion. The processor must have more than 8 cores. 128.0 GB of RAM
are necessary to run the experiments corresponding to Figure 6,
as all images are built and stored in RAM by our tool in order to
achieve reasonable preparation times. Note that this amount of

Uhttps://github.com/project-flexos/asplos22-ae
Zhttps://zenodo.org/record/5748505
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cores/RAM is required to reproduce this paper’s results, not to run
FlexOS.

A.3.3  Software Dependencies. This artifact has been tested with
Debian GNU/Linux 11 with Linux kernel version 5.10.70-1 (KVM
enabled), Docker version 20.10.10 (or any recent version). All
other dependencies are automatically installed by the artifact’s
scripts.

A.3.4  Data Sets. All data sets and benchmarks are included in the
artifact, generated automatically, or downloaded automatically by
the run scripts.

A.4 Installation

Before running any experiment, prepare your host with the recom-
mendations detailed above in A.3.3. Note that all commands below
assume superuser permissions. Once the system is set up, clone our
AE repository:

$ git clone https://github.com/ukflexos/asplos22-ae.git

Then, generate a GitHub personal access token with the permis-
sions "public_repo" and set it in the Makefiles. You can do it for
the entire system by exporting an environment variable:

$ export KRAFT_TOKEN="<your token>"

Alternatively, you can also set it individually in every Makefile
by editing the KRAFT_TOKEN variable:

#

# Parameters

#

KRAFT_TOKEN ?= <your token>

Note that if KRAFT_TOKEN is set system-wide, definitions in Make-
files will not override it. After this, install dependencies on the host:

$ make dependencies

A.5 Experiment Workflow

All experiments should be prepared first. The prepare step installs
necessary tools and downloads additional resources before they can
run. This can be done for a single experiment or for all experiments,
for example:

$ make prepare-fig-@7 # prepare experiment 7
$ make prepare # prepare all experiments

The automated preparation of all experiments takes on average
6-12 hours on our setup. This very long preparation time is due
to the generation of all images. Once one or many experiments
have been prepared they can be run, again using a similar syntax
as above:

$ make run-fig-@7 # run experiment 7
$ make run # run all experiments


https://github.com/project-flexos/asplos22-ae
https://zenodo.org/record/5748505
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Running all automated experiments takes on average 4-5 hours
on our setup. The plot for Figure 8 is not automated, and neither is
the measurement of LoC changes for Table 1. We estimate that the
combination of the two manual items may take up to 1.5 hours of
manual work. Automated experiments will generate experimental
results within the results folder of the specific experiment. To plot
one or many experiment figures, use, for example:

$ make plot-fig-07 # plot experiment 7
$ make plot # plot all experiments

You can clean, or "properclean” to completely reset any prepara-
tion with make clean or make properclean for individual or all
experiments, for example:

make
make
make
make

clean-fig-07
properclean-fig-07
clean

properclean

@ o p e

The clean rule removes results and plots, the properclean rule
additionally deletes containers.

A.6 Evaluation and Expected Results

Reproducing experiments on the same machine should produce the
same results as in the paper. On other machines, we expect differ-
ent absolute numbers but similar ordering. On recent processors
that benefit from hardware mitigations for transient executions
attacks we expect EPT, Linux, and SeL4 measurements to improve
comparatively to the MPK baseline.

A.7 Experiment Customization

Reviewers may use the base FlexOS Docker container to access
a clean FlexOS development environment, port their own appli-
cation, and build custom images. Instructions to build the base
FlexOS Docker image, port applications, and build custom images
are available in the README . md file of our main AE repository>.

A.8 Notes

Some experiments have a slightly different workflow compared to
the one described in A.5. Figure 6 requires you to set HOST_CORES
with a set of cores to be used for the experiment. Figure 7 is only a
plot and requires some manual steps. Figure 11b requires a reboot
of the machine with different kernel parameters. Table 1 is manual.
In all of these cases, the local README.md provides appropriate
explanations. In general, the top-level and individual README . md
files of our artifact contains more precise information on experiment
timings, repository structure, setup requirements, and potential
issues and solutions. We strongly recommend a careful read of
these instructions before starting to reproduce experiments.

A.9 Methodology
Submission, reviewing and badging methodology:

e https://acm.org/publications/policies/artifact-review-badging
e http://cTuning.org/ae/submission-20201122.html
o http://cTuning.org/ae/reviewing-20201122.html

3https://github.com/project-flexos/asplos22-ae/blob/main/README.md
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