
Unikraft: Fast, Specialized Unikernels the Easy Way

Simon Kuenzer
NEC Laboratories Europe GmbH

Vlad-Andrei Bădoiu∗

University Politehnica of Bucharest

Hugo Lefeuvre∗

The University of Manchester

Sharan Santhanam∗

NEC Laboratories Europe GmbH

Alexander Jung∗

Lancaster University

Gaulthier Gain∗

University of Liège

Cyril Soldani∗

University of Liège

Costin Lupu
University Politehnica of Bucharest

S, tefan Teodorescu
University Politehnica of Bucharest

Costi Răducanu
University Politehnica of Bucharest

Cristian Banu
University Politehnica of Bucharest

Laurent Mathy
University of Liège

Răzvan Deaconescu
University Politehnica of Bucharest

Costin Raiciu
University Politehnica of Bucharest

Felipe Huici
NEC Laboratories Europe GmbH

Abstract

Unikernels are famous for providing excellent performance

in terms of boot times, throughput and memory consump-

tion, to name a few metrics. However, they are infamous

for making it hard and extremely time consuming to extract

such performance, and for needing significant engineering

effort in order to port applications to them. We introduce

Unikraft, a novel micro-library OS that (1) fully modularizes

OS primitives so that it is easy to customize the unikernel

and include only relevant components and (2) exposes a set

of composable, performance-oriented APIs in order to make

it easy for developers to obtain high performance.

Our evaluation using off-the-shelf applications such as ng-

inx, SQLite, and Redis shows that running them on Unikraft

results in a 1.7x-2.7x performance improvement compared

to Linux guests. In addition, Unikraft images for these apps

are around 1MB, require less than 10MB of RAM to run,

and boot in around 1ms on top of the VMM time (total boot

time 3ms-40ms). Unikraft is a Linux Foundation open source

project and can be found at www.unikraft.org.

1 Introduction

Specialization is arguably the most effective way to achieve

outstanding performance, whether it is for achieving high

throughput in network-bound applications [38, 50, 52], mak-

ing language runtime environments more efficient [20, 23, 47,

∗These are main authors that contributed equally to the paper.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroSys ’21, April 26–29, 2021, Online, United Kingdom

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8334-9/21/04.

https://doi.org/10.1145/3447786.3456248

65], or providing efficient container environments [62, 76],

to give some examples. Even in the hardware domain, and

especially with the demise of Moore’s law, manufacturers

are increasingly leaning towards hardware specialization to

achieve ever better performance; the machine learning field

is a primary exponent of this [30, 32, 34].

In the virtualization domain, unikernels are the golden

standard for specialization, showing impressive results in

terms of throughput, memory consumption, and boot times,

among others [36, 40, 45, 47, 48]. Some of those benefits come

from having a single memory address space, thus eliminating

costly syscall overheads, but many of those are the result

of being able to hook the application at the right level of

abstraction to extract best performance: for example, a web

server aiming to service millions of requests per second can

access a low-level, batch-based network API rather than the

standard but slow socket API. Such an approach has been

taken in several unikernel projects but often in an ad hoc,

build-and-discard manner [38, 48, 52]. In all, despite clear

benefits, unikernels suffer from two major drawbacks:

• They require significant expert work to build and to

extract high performance; such work has to, for the

most part, be redone for each target application.

• They are often non-POSIX compliant, requiring port-

ing of applications and language environments.

We argue that these drawbacks are not fundamental, and

propose a unikernel architecture built specifically to ad-

dress them. Existing unikernel projects, even those based

on library architectures, tend to consist of small but mono-

lithic kernels that have complex, intertwined and sometimes

opaque APIs for their components. This means that develop-

ers not only have to often port applications to such systems,

but that optimizing their performance requires digging into

the code and the specifics of the (uni)kernel in order to un-

derstand how to best obtain performance gains.

376

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Kuenzer, et al.

Further, such systems typically rely on size-based special-

ization: removing all unnecessary components to achieve

minimal images.While this strategy already offers significant

benefits, we argue that unikernels based on library architec-

tures should ease access to true specialization, allowing users

to choose the best system component for a given application,

environmental constraints, and key performance indicators.

In this paper we propose Unikraft, a novel micro-library

operating system targeted at painlessly and seamlessly gen-

erating specialized, high performance unikernels. To do so,

Unikraft relies on two key principles:

• The kernel should be fully modular in order to allow

for the unikernel to be fully and easily customizable.

In Unikraft, OS primitives such as memory allocators,

schedulers, network stacks and early boot code are

stand-alone micro-libraries.

• The kernel should provide performance-minded, well-

defined APIs that can be easily selected and composed

in order to meet an application’s performance needs.

In Unikraft, such APIs are micro-libraries themselves,

meaning that they can be easily added to or removed

from a build, and that their functionality can be ex-

tended by providing additional such micro-libraries.

In brief, the key conceptual innovation of Unikraft is defin-

ing a small set of APIs for core OS components that makes it

easy to replace-out a component when it is not needed, and

to pick-and-choose from multiple implementations of the

same component when performance dictates. The APIs have

been built with performance (e.g., by supporting batching

by design) and minimality in mind (no unneeded features).

To support a wide range of applications, we port the musl

libc library, and provide a syscall shim layer micro-library.

As a result, running an application on Unikraft can be as

simple as building it with its native build system, and link-

ing the resulting object files back into Unikraft. In addition,

Unikraft supports a number of already-ported applications

(e.g., SQLite, nginx, Redis), programming languages and

runtime environments such as C/C++, Go, Python, Ruby,

Web Assembly and Lua, and a number of different hypervi-

sors/VMMs (QEMU/KVM, Xen, Firecracker [4], and Solo5 [78]

as of this writing).

Our evaluation using such applications on Unikraft results

in a 1.7x-2.7x performance improvement compared to Linux

guests. In addition, Unikraft images for these apps are around

1MB, require less than 10MB of RAM to run, and boot in

around 1ms on top of the VMM time (total boot time 2ms-

40ms). Unikraft is a Linux Foundation open source project

and the sources can be found at www.unikraft.org.

2 Design Principles and Solution Space

Before deriving what the key design principles for Unikraft

are, it is worth analyzing the features and (heavyweight)

mechanisms of traditional OSes that are unnecessary or ill-

suited to single application use cases:

• Protection-domain switches between the application

and the kernel might be redundant in a virtualization

context because isolation is ensured by the hypervisor,

and result in measurable performance degradation.

• Multiple address spaces may be useless in a single ap-

plication domain, but removing such support in stan-

dard OSes requires a massive reimplementation effort.

• For RPC-style server applications, threading is not

needed, with a single, run-to-completion event loop

sufficing for high performance. This would remove the

need for a scheduler within the VM and its associated

overheads, as well as the mismatch between the guest

and hypervisor schedulers [19].

• For performance-oriented UDP-based apps, much of

the OS networking stack is useless: the app could sim-

ply use the driver API, much like DPDK-style applica-

tions already do. There is currently no way to easily

remove just the network stack but not the entire net-

work sub-system from standard OSes.

• Direct access to NVMe storage from apps removes the

need for file descriptors, a VFS layer and a filesystem,

but removing such support from existing OSes, built

around layers of the storage API, is very difficult.

• Memory allocators have a large impact on applica-

tion performance, and general purpose allocators have

been shown to be suboptimal for many apps [66]. It

would therefore be ideal if each app could choose its

own allocator; this is however very difficult to do in

today’s operating systems because the allocators that

kernels use are baked in.

This admittedly non-exhaustive list of application-specific

optimizations implies that for each core functionality that

a standard OS provides, there exists at least one or a few

applications that do not need it. Removing such functionality

would reduce code size and resource usage but would often

require an important re-engineering effort.

The problem we want to solve is to enable developers

to create a specialized OS for every single application to

ensure the best performance possible, while at the same time

bounding OS-related development effort and enabling easy

porting of existing applications. This analysis points to a

number of key design decisions:

• Single address space: Target single application sce-

narios, with possibly different applications talking to

each other through networked communications.

• Fully modular system: All components, including

operating system primitives, drivers, platform code

and libraries should be easy to add and remove as

needed; even APIs should be modular.

• Single protection level: There should be no user-

/kernel-space separation to avoid costly processormode

377

Unikraft: Fast, Specialized Unikernels the Easy Way EuroSys ’21, April 26–29, 2021, Online, United Kingdom

fs
time

90

mm

277

sched

111

net

311

block

95

locking

13

security

14

irq23

77

37

151

1

2

4

110

ipc3

213

15

53

2

28

6

22

207

101

36

16
8

2

91

551

107

465

60

11

5

7

27

720

68

46
36

25

2

10

164

24

30

117

8

7

119

226

3
122

19
124

6

4

10
17

67

11

6

39

1

34

5

13

15

1

2

2

Figure 1. Linux kernel components have strong inter-dependencies,

making it difficult to remove or replace them.

fs posix-layer

20

locking
1 sched

1 mm6

1 net2

1

ipc
1

9

39

2

3

7 time2

security 1

nginx 10

Figure 2. Nginx Unikraft dependency graph

posix-layer

mm

boot

argparse

nolibc

ukalloc

6

ukallocbuddy

1

3

ukboot
3

1

ukargparse

1

Hello World 1

Figure 3. Helloworld Unikraft dependency graph

switches. This does not preclude compartmentaliza-

tion (e.g., of micro-libraries), which can be achieved at

reasonable cost [69].

• Static linking: Enable compiler features, e.g., Dead

Code Elimination (DCE) and Link-Time Optimization

(LTO), to automatically get rid of unneeded code.

• POSIX support: In order to support existing or legacy

applications and programming languages while still

allowing for specialization under that API.

• Platform abstraction: Seamless generation of im-

ages for a range of different hypervisors/VMMs.

Given these, the question is how to implement such a sys-

tem: by minimizing an existing general-purpose operating

system, by starting from an existing unikernel project, or

from scratch.

Existing work has taken three directions in tackling this

problem. The first direction takes existing OSes and adds

or removes functionality. Key examples add support for a

single address space and remove protection domain cross-

ings: OSv [37] and Rump [36] adopt parts of the BSD kernel

and re-engineer it to work in a unikernel context; Lupine

Linux [40] relies on a minimal, specialized configuration of

the Linux kernel with Kernel Mode Linux (KML) patches.

These approaches make application porting easy because

they provide binary compatibility or POSIX compatibility,

but the resulting kernel is monolithic.

Existing monolithic OSes do have APIs for each compo-

nent, but most APIs are quite rich as they have evolved

organically, and component separation is often blurred to

achieve performance (e.g., sendfile short circuits the net-

working and storage stacks). The Linux kernel, for instance,

historically featured highly inter-dependent subsystems [8].

To better quantify this API complexity, we analyzed depen-

dencies between the main components of the Linux kernel.

As a rough approximation, we used the subdirectories in

the kernel source tree to identify (broad) components. We

used cscope to extract all function calls from the sources

of all kernel components, and then for each call checked to

see if the function is defined in the same component or a

different one; in the latter case, we recorded a dependency.

We plot the dependency graph in Figure 1: the annotations

on the edges show the number of dependencies between

nodes. This dense graph makes it obvious that removing

or replacing any single component in the Linux kernel re-

quires understanding and fixing all the dependencies of other

components, a daunting task.

While full modularization is difficult, modularizing certain

parts of a monolithic kernel has been done succesfully by

Rump. There, the NetBSD kernel was split into base layers

(which must be used by all kernels), functions provided by

the host (scheduling, memory allocation,etc) and so-called

factions that can be run on their own (e.g. network or filesys-

tem support). Rump goes some way towards achieving our

goals, however there are still many dependencies left which

require that all kernels have the base and hypercall layers.

The second direction is to bypass the operating system

(OS) altogether, mostly for I/O performance, while leaving

the original stack in place – wasting resources in the process.

Even here, porting effort is required as apps must be coded

against the new network (DPDK, netmap [64] or Linux’s

io_uring [11] subsystem) or storage (SPDK) API.

The third direction is to add the required OS functionality

from scratch for each target application, possibly by reusing

code from existing operating systems. This is the approach

taken by ClickOS [51] to support Click modular routers, Mi-

rageOS [46] to support OCaml applications, and MiniCache

[39] to implement a web cache, to name a few. The result-

ing images are very lean, have great performance and have

378

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Kuenzer, et al.

small boot times; the big problem is that the porting effort is

huge, and that it has to be mostly repeated for every single

application or language.

In sum, starting from an existing project is suboptimal

since none of the projects in the three directions mentioned

were designed to support the key principles we have outlined.

We opt for a clean-slate API design approach, though we do

reuse components from existing works where relevant.

3 Unikraft Architecture and APIs

In contrast to classical OS work, which can be roughly split

between monolithic kernels (with great performance) versus

micro-kernels that provide great isolation between OS com-

ponents (at the expense of performance), our work embraces

both the monolithic design (no protection between compo-

nents) and the modularity that micro-kernels advocated.

We use modularity to enable specialization, splitting OS

functionality into fine-grained components that only commu-

nicate across well-defined API boundaries. Our key observa-

tion is that we can obtain performance via careful API design

and static linking, rather than short-circuiting API bound-

aries for performance. To achieve the overarching principle

of modularity, Unikraft consists of two main components:

• Micro-libraries: Micro-libraries are software compo-

nents which implement one of the core Unikraft APIs;

we differentiate them from libraries in that they have

minimal dependencies and can be arbitrarily small,

e.g., a scheduler. All micro-libraries that implement

the same API are interchangeable. One such API con-

tains multiple memory allocators that all implement

the ukalloc interface. In addition, Unikraft supports

libraries that can provide functionality from external

library projects (OpenSSL, musl, Protobuf [31], etc.),

applications (SQLite, Redis, etc.), or even platforms

(e.g., Solo5, Firecracker, Raspberry Pi 3).

• Build system: This provides a Kconfig-based menu

for users to select which micro-libraries to use in an

application build, for them to select which platform(s)

and CPU architectures to target, and even configure

individual micro-libraries if desired. The build system

then compiles all of the micro-libraries, links them,

and produces one binary per selected platform.

Figure 4 shows Unikraft’s architecture. All components

are micro-libraries that have their own Makefile and Kconfig

configuration files, and so can be added to the unikernel build

independently of each other1. APIs are also micro-libraries

that can be easily enabled or disabled via a Kconfig menu;

unikernels can thus compose which APIs to choose to best

cater to an application’s needs (e.g., an RCP-style application

might turn off the uksched API in order to implement a high

performance, run-to-completion event loop).

1Unless, of course, a micro-library has a dependency on another, in which

case the build system also builds the dependency.

Unikraft’s architecture also includes components that add

POSIX support, making it relatively easy to support existing

applications (more on this in §4). Unikraft can improve the

performance of applications in two ways:

1. Unmodified applications, by eliminating syscall over-

heads, reducing image size and memory consumption,

and by choosing efficient memory allocators.

2. Specialization, by adapting applications to take ad-

vantage of lower level APIs wherever performance is

critical (e.g., a database application seeking high disk

I/O throughput).

As a proof of Unikraft’s modularity, a minimal HelloWorld

configuration yields an image of 200KB in size on KVM and

40KB on Xen, requiring only platform boostrapping code

and nolibc, a Unikraft-specific libc replacement that only

provides a basic minimal set of functionality such as memcpy

and string processing. All the libraries used in this image

are shown in Figure 3; in contrast, the entire Linux kernel in

Figure 1 is needed for a Hello World app in Linux.

Most applications do require more functionality (see nginx

image in Figure 2). Note how (1) this image does not include

a block subsystem since it only uses RamFS, and (2) how

all components are smaller and have fewer dependencies

than their Linux counterparts. These examples showcase

Unikraft’s ability to easily add and remove components, in-

cluding core OS ones, allowing developers to create efficient,

specialized images for their apps.

The ability to easily swap components in and out, and to

plug applications in at different levels presents application

developers with a wide range of optimization possibilities.

To begin with, unmodified applications (e.g. Hello World and

nginx) can use the posix-compatibility layer with musl (�
in Figure 4) or nolibc, transparently getting low boot times,

lower memory consumption and improved throughput be-

cause of the lack of syscall overheads, as Unikraft syscalls

are effectively function calls.

Likewise, the application developer can easily select an

appropriate memory allocator (�) to obtain maximum per-

formance, or to use multiple different ones within the same

unikernel (e.g., a simple, fast memory allocator for the boot

code, and a standard one for the application itself).

Developers interested in fast boot times could further

optimize the unikernel by providing their own boot code (�)

to comply with the ukboot API; in §6 we show experiments

with two boot code micro-libraries, one with static memory

pages and one with dynamic ones, showing the trade-off

between boot time and memory allocation flexibility.

For network-bound applications, the developers can use

the standard socket interface (�) or the lower level, higher

performance uknetdev API (�) in order to significantly im-

prove throughput; we will discuss this API in greater detail

below, and will evaluate it in §6. Similarly, disk-bound appli-

cations such as databases can follow a standard path through

the vfscore micro-library (�), or optimize throughput by

379

Unikraft: Fast, Specialized Unikernels the Easy Way EuroSys ’21, April 26–29, 2021, Online, United Kingdom

Figure 4. The Unikraft architecture (APIs in black boxes)

enables specialization by allowing apps to plug into APIs at

different levels and to choose from multiple API implemen-

tations.

coding against the ukblockAPI (�). Schedulers are also plug-

gable (), and each CPU core can run a different scheduler

(even if multi-core support is still work in progress).

We will visit and evaluate several of these scenarios later

on in the paper, but first we give a more in-depth look into

Unikraft’s APIs by focusing on a subset of them.

3.1 uknetdev API

Unikraft’s networking sub-system decouples the device dri-

ver side (e.g., virtio-net, netfront) from the network stack or

low-level networking application (application for short).

Regarding the former, easily swapping network stacks is

something that is not common in commodity OSes; instead,

drivers are usually implemented for a particular network

stack. The aim of this API is to decouple these two compo-

nents in order to allow drivers to be reused across platforms.

For the latter, a networking application or network stack

should be able to run unmodified on a different platform

with different drivers. Because we are addressing a wide

range of use cases, the API should not restrict any of them

nor become a potential performance bottleneck for high

performance workloads. We derived part of the design from

Intel DPDK’s rte_netdev API. However, because its focus is

on high performance rather than efficient resource usage, we

designed an API that allows applications to operate Unikraft

drivers in polling, interrupt-driven, or mixed mode.

In addition, uknetdev leaves memory management to the

application, all the while supporting high performance fea-

tures like multiple queues, zero-copy I/O, and packet batch-

ing. We let the application fully operate and initialize the

driver; drivers do not run any initialization routine on their

own. Instead, we provide API interfaces for applications to

provide necessary information (e.g., supported number of

queues and offloading features) so that the application code

can specialize by picking the best set of driver properties

and features. Drivers register their callbacks (e.g, send and

receive) to a uk_netdev structure which the application then

uses to call the driver routines.

In order to develop application-independent network dri-

vers while using the application’s or network stack’s memory

management we introduce a network packet buffer wrap-

per structure called uk_netbuf. This struct contains meta

information needed by the driver to send or receive data in

the packet buffer; the idea is that applications use this struc-

ture for packet buffer allocations, but the layout is under the

control of the application. Since neither the driver nor the

API manage allocations, performance critical workloads can

make use of pre-allocated network buffers pools, while mem-

ory efficient applications can reduce memory the footprint

by allocating buffers from the standard heap. The send and

receive calls of the API look as follows:

int uk_netdev_tx_burst(struct uk_netdev *dev,

uint16_t queue_id,

struct uk_netbuf **pkt,

__u16 *cnt);

int uk_netdev_rx_burst(struct uk_netdev *dev,

uint16_t queue_id,

struct uk_netbuf **pkt,

__u16 *cnt);

The user hands over arrays of uk_netbufs and specifies their

length. On transmit, the driver enqueues as many netbufs as

possible from the given array (size is given with cnt). The

function returns flags that indicate if there is still room on

the queue to send more packets or if the queue is full. The

cnt parameter is also used as an output parameter to indicate

how many packets were actually placed on the send queue.

The receive function works in a similar manner.

As default, a driver operates a queue in polling mode, but

the API has one more interface to enable interrupt mode for

a specific queue. In this mode, whenever the function indi-

cates that there is no more work to be done (no more packets

received or the send queue is full), the interrupt line of the

queue is enabled. During driver configuration the application

can register an interrupt handler per queue which is called

as soon as a packet is received or space becomes available

on the transmit queue. Afterwards, the interrupt line is inac-

tive until the transmit or receive function activates it again

according to the queue state, for instance when all packets

were received by the application. How and where packets

are received or transmitted is entirely up to the application’s

implementation. For instance, the interrupt callback could be

used to unblock a receiving or sending thread, but could also

be included into the eventloop implementations. As soon as

an interrupt arrives the application knows that the receive or

send function has to be called. This implementation avoids

interrupt storms and enables automatic transition to polling

380

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Kuenzer, et al.

mode under heavy load situations.

3.2 ukalloc API

Unikraft’s memory allocation subsystem is composed of

three layers: (1) a POSIX compliant external API, (2) an in-

ternal allocation API called ukalloc, and (3) one or more

backend allocator implementations. The external interface

is motivated by backward compatibility to facilitate the port-

ing of existing applications to Unikraft. In the case of the C

language, the external API is exposed by a modified standard

library which can be nolibc (a minimal, Unikraft-specific libc

implementation), newlib or musl. The external allocation

interface acts as a compatibility wrapper for the Unikraft-

specific internal allocation interface, which in turn redirects

allocation requests to the appropriate allocator backend (each

allocator has its own, separate memory region). The internal

allocation interface therefore serves as a multiplexing facil-

ity that enables the presence of multiple memory allocation

backends within the same unikernel.

Unikraft’s allocation interface exposes uk_ prefixed ver-

sions of the POSIX interface: uk_malloc(), uk_calloc(),

etc. In contrast to POSIX, these functions require the caller

to specify which allocation backend should be used to satisfy

the request. uk_malloc() is defined as:

static inline void *

uk_malloc (struct uk_alloc *a, size_t size);

The struct uk_alloc * argument represents the allocation

backend. This structure contains function pointers that refer

to the allocator’s implementation of the POSIX allocation in-

terface: malloc(), calloc(), posix_memalign(), etc. Note

that uk_malloc(), like most of the internal allocation inter-

face, is designed as an inline method in order to avoid any

additional function call overhead in the allocation path.

Allocators must specify an initialization function which

is called by ukboot at an early stage of the boot process.

Initialization functions are passed a void * base pointer to

the first usable byte of the heap, along with a size_t len

argument which specifies the size of the heap. They must

fully initialize the allocator and register the allocator with

the ukalloc interface. The allocator is considered ready to

satisfy memory allocations as soon as the initialization func-

tion returns. The boot process sets the association between

memory allocators and memory sources.

Unikraft supports five allocation backends: a buddy sys-

tem, the Two-Level Segregated Fits [53] (TLSF) real-time

memory allocator, tinyalloc [67], Mimalloc [42] (version

1.6.1) and the Oscar [12] secure memory allocator. A special

case are garbage-collection (GC) memory allocators that re-

quire a thread to perform GC. We can implement these with

two allocators, one for the early boot time that initializes

the GC thread, and then the main GC allocator, which takes

over as soon as its thread is started; we use this solution for

Mimalloc because it has a pthread dependency.

3.3 uksched and uklock APIs

Unlike many OSes, scheduling in Unikraft is available but

optional; this enables building lightweight single-threaded

unikernels or run-to-completion unikernels, avoiding the

jitter caused by a scheduler within the guest. Example use

cases are to provide support functions as virtual machines

(as in driver domains), or Virtual Network Functions (VNFs).

Similar to ukalloc, uksched abstracts actual scheduler

interfaces. The platform library provides only basic mecha-

nisms like context switching and timers so that scheduling

logic and algorithms are implemented with an actual sched-

uler library (Unikraft supports co-operative and pre-emptive

schedulers as of this writing).

Additionally, Unikraft supports instantiatingmultiple sched-

ulers, for example one per available virtual CPU or for a

subset of available CPUs. For VNFs for example, one may

select no scheduling or cooperative scheduling on virtual

cores that run the data plane processing because of perfor-

mance and delay reasons, but select a common preemptive

scheduler for the control plane.

The uklock library provides synchronization primitives

such as mutexes and semaphores. In order to keep the code

of other libraries portable, uklock selects a target implemen-

tation depending on how the unikernel is configured. The

two dimensions are threading and multi-core support. In the

simplest case (no threading and single core), some of the

primitives can be completely compiled out since there is no

need for mutual exclusion mechanisms. If multi-core were

enabled (we do not yet support this), some primitives would

use spin-locks and RCUs, and so in this case they would be

compiled in.

4 Application Support and Porting

Arguably, an OS is only as good as the applications it can

actually run; this has been a thorn on unikernels’ side since

their inception, since they often require manual porting of

applications. More recent work has looked into using bi-

nary compatibility, where unmodified binaries are taken and

syscalls translated, at run-time, into a unikernel’s underlying

functionality [37, 54]. This approach has the advantage of

requiring no porting work, but the translation comes with

important performance penalties.

Platform Routine call #Cycles nsecs

Linux/KVM
System call 222.0 61.67

System call (no mitigations) 154.0 42.78

Unikraft/KVM System call 84.0 23.33

Both Function call 4.0 1.11

Table 1. Cost of binary compatibility/syscalls with and with-

out security mitigations.

381

Unikraft: Fast, Specialized Unikernels the Easy Way EuroSys ’21, April 26–29, 2021, Online, United Kingdom

To quantify these, Table 1 shows the results of microbench-

marks ran on an Intel i7 9700K 3.6 GHz CPU and Linux 5.11

that compare the cost of no-op system and function calls

in Unikraft and Linux (with run-time syscall translation for

Unikraft). System calls with run-time translation in Unikraft

are 2-3x faster than in Linux (depending on whether KPTI

and other mitigations are enabled). However, system calls

with run-time translation have a tenfold performance cost

compared to function calls, making binary compatibility as

done in OSv, Rump and HermiTux [36, 37, 54] expensive.

For virtual machines running a single application, syscalls

are likely not worth their costs, since isolation is also offered

by the hypervisor. In this context, unikernels can get im-

portant performance benefits by removing the user/kernel

separation and its associated costs. The indirection used by

binary compatibility reduces unikernel benefits significantly.

To avoid these penalties but still minimize porting effort,

we take a different approach: we rely on the target applica-

tion’s native build system, and use the statically-compiled

object files to link them into Unikraft’s final linking step. For

this to work, we ported the musl C standard library, since it

is largely glibc-compatible but more resource efficient, and

newlib, since it is commonly used to build unikernels.

To support musl, which depends on Linux syscalls, we

created a micro-library called syscall shim: each library that

implements a system call handler registers it, via a macro,

with this micro-library. The shim layer then generates a

system call interface at libc-level. In this way, we can link

to system call implementations directly when compiling

application source files nativelywith Unikraft, with the result

that syscalls are transformed into inexpensive function calls.

Table 2 shows results when trying this approach on a

number of different applications and libraries when building

against musl and newlib: this approach is not effective with

newlib [2] (“std” column), but it is with musl: most libraries

build fully automatically. For those that do not, the reason

has to do with the use of glibc-specific symbols (note that

this is not the case with newlib, where many glibc functions

are not implemented at all). To address this, we build a glibc

compatibility layer based on a series of musl patches [56]

and 20 other functions that we implement by hand (mostly

64-bit versions of file operations such as pread or pwrite).

With this in place, as shown in the table (“compat layer”

column), this layer allows for almost all libraries and ap-

plications to compile and link. For musl that is good news:

as long as the syscalls needed for the applications to work

are implemented, then the image will run successfully (for

newlib the stubs would have to be implemented).

4.1 Application Compatibility

How much syscall support does Unikraft have? As of this

writing, we have implementations for 146 syscalls; according

to related work [54, 74], in the region of 100-150 syscalls

are enough to run a rich set of mainstream applications,

musl newlib glue

code

LoC

Size

(MB)

std compat.

layer

Size

(MB)

std compat.

layer

lib-axtls 0.364
 � 0.436
 � 0

lib-bzip2 0.324
 � 0.388
 � 0

lib-c-ares 0.328
 � 0.424
 � 0

lib-duktape 0.756 � � 0.856
 � 7

lib-farmhash 0.256 � � 0.340 � � 0

lib-fft2d 0.364 � � 0.440
 � 0

lib-helloworld 0.248 � � 0.332 � � 0

lib-httpreply 0.252 � � 0.372
 � 0

lib-libucontext 0.248 � � 0.332
 � 0

lib-libunwind 0.248 � � 0.328 � � 0

lib-lighttpd 0.676
 � 0.788
 � 6

lib-memcached 0.536
 � 0.660
 � 6

lib-micropython 0.648 � � 0.708
 � 7

lib-nginx 0.704
 � 0.792
 � 5

lib-open62541 0.252 � � 0.336 � � 13

lib-openssl 2.9
 � 3.0
 � 0

lib-pcre 0.356 � � 0.432
 � 0

lib-python3 3.1
 � 3.2
 � 26

lib-redis-client 0.660
 � 0.764
 � 29

lib-redis-server 1.3
 � 1.4
 � 32

lib-ruby 5.6
 � 5.7
 � 37

lib-sqlite 1.4
 � 1.4
 � 5

lib-zlib 0.368
 � 0.432
 � 0

lib-zydis 0.688 � � 0.756
 � 0

Table 2. Automated porting using externally-built archives

linked against Unikraft using musl and newlib.

frameworks and languages; we confirm this in Table 3, which

lists software currently supported by Unikraft.

Beyond this, we conduct a short analysis of how much

more work it might take to support additional applications.

We use the Debian popularity contest data [14] to select a

set of the 30 most popular server applications (e.g., apache,

mongodb, postgres, avahi, bind9). To derive an accurate set

of syscalls these applications require to actually run, and to

extend the static analysis done in previous work [61] with

dynamic analysis, we created a small framework consisting

of various configurations (e.g., different port numbers for

web servers, background mode, etc.) and unit tests (e.g., SQL

queries for database servers, DNS queries for DNS servers,

etc.). These configurations and unit tests are then given as

input to the analyzer which monitors the application’s be-

havior by relying on the strace utility. Once the dynamic

analysis is done, the results are compared and added to the

ones from the static analysis.

We plot the results against the syscalls currently supported

by our system in the heatmap on Figure 5 (the entire analysis

and heatmap generation is fully automated by a set of tools

we developed). Each square represents an individual syscall,

numbered from 0 (read) to 313 (finit_module). Lightly col-

ored squares are required by none of the applications (0 on

the scale) or few of them (20% of them); black squares (e.g.,

square 1, write) are required by all. A number on a square

means that a syscall is supported by Unikraft, and an empty

square is a syscall not supported yet.

As can be seen from the map, more than half the syscalls

are not even needed in order to support popular applications,

382

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Kuenzer, et al.

Applications NGINX, SQLite, Redis, mem-

cached, Click modular router,

lighttpd (ongoing).

Frameworks Intel DPDK, TensorFlow Lite,

PyTorch.

Compiled

Languages

C/C++, Go, Web Assembly

(WAMR), Lua, Java/OpenJDK

(ongoing), Rust (ongoing)

Interpreted

Languages

Python, Micropython, Ruby,

JavaScript/v8 (ongoing).

Table 3. Applications, frameworks

and languages currently supported by

Unikraft.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 26 28

32 33 34 35 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 53 54 55 56 59
60 61 62 63 72 73 74
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
90 91 92 93 95 96 97 98 99 100 102 103 104
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
120 121 124 132 133

140 141
157 158 160 161

165 166 170

201 202 204 205
211 213 217 218

228 230 231 232 233 235

257 261 269
271 273 280 281

285 288 291 292 293 295 296
302 314 0

20

40

60

80

100

Figure 5. Syscalls required by 30 server

apps vs syscalls supported by Unikraft.

Q2
2019

Q3
2019

Q4
2019

Q1
2020

Quarters

0

20

40

60

80

100

120

140

To
ta

l p
or

tin
g

tim
e

(w
or

ki
ng

 d
ay

s)

132

88

43

24

60

22

1 0

31
21

46

4
16 18

0 0

Libraries
Library dependencies
OS primitives
Build system primitives

Figure 6. Devel survey of total effort to

port a library, including dependencies,

missing OS and build system primitives.

ap
ac

he
av

ah
i

bi
nd

9
do

ve
co

t
ex

im
fir

eb
ird

gr
oo

ng
a

h2
o

in
flu

xb
kn

ot
lig

ht
tp

d
m

ar
ia

db
m

em
ca

ch
ed

m
on

go
db

m
on

go
os

e
m

on
gr

el
m

ut
t

m
ys

ql
ng

ht
tp

ng
in

x
nu

llm
ai

le
r

op
en

lit
es

pe
ed

w
eb

op
en

sm
tp

d
po

st
gr

es
ql

re
di

s
sq

lit
e3

tn
tn

et
w

eb
fs

w
eb

or
f

w
hi

te
db

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

S
ys

te
m

ca
ll

su
pp

or
t

Supported syscalls
If top 5 syscalls implemented
If top 10 syscalls implemented
If remaining syscalls implemented

Figure 7. Syscall support for top 30 server apps [14]. All

apps are close to being supported, and several already work

even if some syscalls are stubbed (SQLite, nginx).

and most of the needed syscalls we already support. Of those

that are not supported (in the order of about 60):

• several can be quickly stubbed in a unikernel context

(e.g., getcpu, if using a single cpu);

• many are relatively trivial to implement since the nec-

essary functionality is already supported by Unikraft

(e.g., semget/semopt/semctl).

• and the rest arework in progress (e.g., epoll, eventfd).

To quantify this even further, Figure 7 plots, for each of the

selected 30 applications, how much of their needed syscalls

Unikraft supports so far (in green), how close to full support

we would be if we implemented the next 5 most common

syscalls across all 30 applications (yellow), the next 10 (light

blue), all the way to full support. The first take-away is

that all applications are close to having full support (the

graph is mostly green). The second thing to note is that even

applications that we do have running are not all green (e.g.,

SQLite, nginx): this is because many applications work even

if certain syscalls are stubbed or return ENOSYS (which our

shim layer automatically does if a syscall implementation

is missing). We are currently in the process of conducting a

survey of how many of these applications can actually run

despite their bars not being completely green.

We estimate that a moderate level of additional engineer-

ing work to support these missing syscalls would result in

even wider support for applications. Finally, for cases where

the source code is not available, Unikraft also supports binary

compatibility and binary rewriting as done in HermiTux [54].

4.2 Manual Porting

When the automated approach does not work and perfor-

mance is paramount so binary compatibility is not an option,

we rely on manual porting. Note, however, that because

Unikraft’s micro-libraries provide a common code base for

building specialized stacks, such manual porting is signif-

icantly less time consuming than that of past unikernels

projects (including our own work) that take in the order of

months to be put together; this is clear from the few lines of

glue code we needed to add when porting a wide range of

libraries and applications (see Table 2, last column).

In fact, anecdotal accounts throughout the lifetime of

Unikraft point to the fact that, as the common code base has

matured, porting additional functionality has gotten increas-

ingly easier. Admittedly, quantifying the actual man hours

spent porting a library is a difficult exercise (e.g., because

commit timestamps may hide the fact that, during the course

of porting a library, significant time was spent porting one of

its dependencies). Nevertheless, we have conducted a survey

of all developers in the project’s open source community

(around 70) who have ported a library or application, and

present the results here. In particular, we asked developers

to roughly calculate the time it took to port an actual library

or application, the time it took to port library dependencies

(e.g., memcached requires libevent), and the time it took to

implement missing OS primitives (e.g., the poll() function)

or add functionality to Unikraft’s build system. We use git

commit history to track when a port was started.

To show the evolution of the porting effort as the project

matured, we plot the results of the survey in a time-line

starting in March 2019 and ending in May 2020 in Figure 6;

for ease of presentation, we further group the results in

quarters. The figure confirms the anecdotal evidence that,

as time progressed, the amount of time developers had to

spend porting dependencies or implementing missing OS

primitives has significantly decreased.

Finally, Unikraft’s support for a wide range of languages

383

Unikraft: Fast, Specialized Unikernels the Easy Way EuroSys ’21, April 26–29, 2021, Online, United Kingdom

and their environments (standard libraries, garbage collec-

tors, etc.) means that a number of projects based on these

(e.g., Intel’s DNNL/C++, Django/Python, Ruby on Rails/Ruby,

etc.) should work out of the box.

5 Base Evaluation

The main goal of Unikraft is to help developers quickly and

easily create resource-efficient, high-performance uniker-

nels. In this section we evaluate to what extent Unikraft

achieves this goal transparently, i.e., without having to mod-

ify applications (essentially scenarios 1-3 in the architecture

diagram in Figure 4); then, in Section 6 we will evaluate how

(slight) modifications to comply with Unikraft’s APIs can

result in even higher performance.

Throughout our evaluation, we use KVM as the virtual-

ization platform. Unikraft also supports Xen and bare-metal

targets (e.g., Raspberry Pi and Xilinx Ultra96-V2), but we

leave their performance evaluation to future work. We run

all experiments on an inexpensive (roughly €800) Shuttle

SH370R6 computer with an Intel i7 9700K 3.6 GHz (4.9 Ghz

with Turbo Boost, 8 cores) and 32GB of RAM. For the DPDK

experiment we use two of these connected via a direct cable

and a pair of Intel X520-T2 cards with the 82599EB chipset.

Further, we disabled Hyper-Threading and isolated 4 CPU

cores for the host using kernel boot parameters (isolcpus=4-7

noht); from the remaining 4 CPU cores we pinned one to

the VM, another one to the VMM (e.g., qemu-system), and

another one to the client tool (e.g., wrk or redis-benchmark),

and set the governor to performance. Finally, for the Xen

boot experiments we use Xen version 4.0.

All experiments were conducted by pinning a CPU core to

the VM, another one to the VMM (e.g., qemu-system), and

another one to the client tool (e.g., wrk or redis-benchmark);

by disabling Hyper-threading; and by setting the governor

to performance.

5.1 Resource Efficiency: Smaller is Better

The main advantage of unikernels over traditional OSes is

their low resource consumption. This is reflected in binary

image size when on disk, and boot-time and memory foot-

print at runtime. We evaluated these for a number of rep-

resentative apps in Unikraft, in comparison with leading

unikernels, and Linux. Our results are shown in figs. 8 to 11.

In order to quantify image sizes in Unikraft, we generate

a number of images for all combinations of DCO and LTE,

and for a helloworld VM and three other applications: nginx,

Redis and SQLite. The results in Figure 8 show that Unikraft

images are all under 2MBs for all of these applications. We

further compare these results with other unikernels and

Linux in Figure 9. As shown, Unikraft images are smaller

than all other unikernel projects and comparable to Linux

userspace binaries (note that the Linux sizes are just for

the application; they do not include the size of glibc nor

the kernel). This is a consequence of Unikraft’s modular

approach, drastically reducing the amount of code to be

compiled and linked (e.g., for helloworld, no scheduler and

no memory allocator are needed).

Small image sizes are not only useful for minimizing disk

storage, but also for quick boot times. LightVM [48] has

shown that it is possible to boot a no-op unikernel in around

2ms, with a heavily optimized Xen toolstack. In our eval-

uation, we use standard virtualization toolstacks instead,

and wish to understand how quickly Unikraft VMs can boot.

When running experiments, we measure both the time taken

by the VMM (e.g. Firecracker, QEMU, Solo5) and the boot

time of the actual unikernel/VM, measured from when the

first guest instruction is run until main() is invoked.

The results are shown in Figure 10, showing how long

a helloworld unikernel needs to boot with different VMMs.

Unikraft’s boot time onQEMU and Solo5 (guest only, without

VMM overheads) ranges from tens (no NIC) to hundreds

of microseconds (one NIC). On Firecracker, boot times are

slightly longer but do not exceed 1ms. These results compare

positively to previous work: MirageOS (1-2ms on Solo5), OSv

(4-5ms on Firecracker with a read-only filesystem), Rump

(14-15ms on Solo5), Hermitux (30-32ms on uHyve), Lupine

(70ms on Firecracker, 18ms without KML), and Alpine Linux

(around 330ms on Firecracker). This illustrates Unikraft’s

ability to only keep and initialize what is needed.

Overall, the total VM boot time is dominated by the VMM,

with Solo5 and Firecracker being the fastest (3ms), QEMU

microVM at around 10ms and QEMU the slowest at around

40ms (we elaborate on guest boot times in figs. 14 and 21).

These results show that Unikraft can be readily used in sce-

narios where just-in-time instantiation of VMs is needed.

Finally, previous work [48] stressed the importance of

not only fast instantiation but also VM density. In order to

understand how many unikernel VMs we could pack on a

single server when RAM is a bottleneck, we ran experiments

to measure the minimum amount of memory required to

boot various applications as unikernels, finding that 2-6MBs

of memory suffice for Unikraft guests (Figure 11).

5.2 Filesystem Performance

Unikraft has a VFS layer which apps can link against for

file I/O. Typically, Unikraft guests include a RAM filesystem

when they do not require access to persistent storage. To

support persistent storage, apps can use the 9pfs [77] pro-

tocol to access such storage on the host or in the network.

Our 9pfs implementation relies on virtio-9p as transport for

KVM, implementing the standard VFS operations. Enabling

the 9pfs device adds 0.3ms to the boot time of Unikraft VMs

on KVM, and 2.7ms on Xen.

We measured file-access latency for both read and write;

the 9pfs filesystem resides in the host, is 1GB in size and

contains random data. Our Unikraft test application reads

chunks of sizes 4K, 8K, 16K and 32K, measuring the latency

384

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Kuenzer, et al.

hello
world

nginx
redis

sq
lite

0.0B

1.0MB

2.0MB

Im
ag

e
si

ze

25
6.

7K
B

25
6.

7K
B

19
2.

7K
B

19
2.

7K
B

1.
6M

B
1.

2M
B

83
2.

8K
B

83
2.

8K
B

1.
8M

B
1.

4M
B

1.
1M

B
1.

1M
B 1.

6M
B

1.
3M

B
83

2.
8K

B
83

2.
8K

B

Default configuration
+ Link-Time Optim. (LTO)

+ Dead Code Elim. (DCE)
+ DCE + LTO

Figure 8. Image sizes of Unikraft appli-

cations with and without LTO and DCE.

21
3.

0K
B

1.
6M

B
1.

8M
B

1.
6M

B

1.
3M

B
1.

5M
B

2.
1M

B

16
.4

K
B

1.
2M

B
1.

8M
B

1.
1M

B
1.

7M
B 3.

6M
B

2.
6M

B
3.

2M
B

3.
3M

B

4.
5M

B
5.

4M
B

8.
1M

B
5.

4M
B

2.
8M

B
5.

4M
B

3.
7M

B
3.

9M
B

Unikr
aft

Herm
itu

x

Linux Use
r

Lupine

Mira
ge

OSv

Rumprun
0B

41132MB

3366MMMMBMBBBBBMM4MB

MM
55555 55BB6MB

BBBBBBB8MB

M10MB

Im
ag

e
si

ze

hello
nginx

redis
sqlite

Figure 9. Image sizes for Unikraft and

other OSes, stripped, w/o LTO and DCE.

QEMU

QEMU
(1NIC

)

QEMU

(M
icr

oVM) Solo5

Fire
cra

cke
r

0

100

101

102

To
ta

lB
oo

tT
im

e
(m

s)

38
.4

m
s

42
.7

m
s

9.
1m

s

3.
1m

s

3.
1m

s

VMM
Unikraft Guest

Figure 10.Boot time for Unikraft images

with different virtual machine monitors.

Unikr
aft

Docke
r

Rumprun

Herm
itu

x

Lupine
OSv

Linux

Micr
oVM

0B

8MB

16MB

24MB

32MB

40MB

48MB

M
in

im
um

M
em

or
y

R
eq

ui
re

m
en

t

2M
B 5M

B
7M

B
4M

B
6M

B
7M

B
7M

B
6M

B
8M

B 12
M

B
13

M
B

10
M

B

11
M

B
13

M
B

10
M

B

20
M

B
21

M
B

21
M

B
21

M
B

24
M

B
26

M
B

40
M

B
26

M
B

29
M

B
29

M
B

30
M

B
29

M
B

hello
nginx

redis
sqlite

Figure 11.Minimummemory needed to

run different applications using different

OSes, including Unikraft.

Herm
itu

x uHyv
e

Linux FC

Lupine FC

Rump KVM

Linux KVM

Lupine KVM

Docke
r Nativ

e

OSv KVM

Linux Nativ
e

Unikr
aft KVM

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

r.
Th

ro
ug

hp
ut

(M
ill

io
n

re
q/

s)

GET SET

0.
37

0.
24

1.
14

1.
06 1.

26
0.

93

1.
33

1.
17 1.

54
1.

31

1.
82

1.
52

1.
95

1.
68 1.

98
1.

54

2.
44

2.
01

2.
68

2.
26

Figure 12. Redis perf (30 conns, 100k

reqs, pipelining 16) with QEMU/KVM

and Firecracker (FC).

Mira
ge

Solo
5

Lin
ux

FC

Lu
pin

e FC

Lin
ux

KVM

Rum
p KVM

Doc
ke

r Nati
ve

Lin
ux

Nati
ve

Lu
pin

e KVM

OSv KVM

Unik
ra

ft K
VM

0

50

100

150

200

250

300

350

A
ve

ra
ge

Th
ro

ug
hp

ut
(x

10
00

re
q/

s)

25
.9 60

.1 71
.6 10

4.
5 15
2.

6

16
0.

3

17
5.

6

18
9.

0 23
2.

7 29
1.

8

Figure 13. NGINX (and Mirage HTTP-

reply) performance with wrk (1 minute,

14 threads, 30 conns, static 612B page).

for each read. To benchmark against a Linux VM, we used

dd to transfer the same data to /dev/null. We estimate the

latency from the dd output by dividing the total time by the

number of blocks. The results in Figure 20 show that Unikraft

achieves lower read latency and lower write latency with

different block sizes and are considerably better than ones

from the Linux VM.

5.3 Application Throughput

For this part of the evaluation, we use manual ports of nginx

and Redis (two representative server apps) and compare

their performance to that of existing solutions, including a

non-virtualized (native) Linux binary, a Docker container,

a Linux microVM, and a representative set of unikernels.

We conduct all measurements with the same application

config and where possible the same application version (this

is limited by application support, e.g., Lupine, HermiTux, and

Rump only support a specific version of Redis), on a single

core. We did not optimize application or kernel configs for

performance, however we took care of removing obvious

performance bottlenecks for each system, e.g., switching

on memory pools in Unikraft’s networking stack (based on

lwIP [17]), or porting Lupine to QEMU/KVM in order to

avoid Firecracker performance bottlenecks [4, 24]. Unikraft

measurements use Mimalloc as the memory allocator.

The results are shown in Figures 12 and 13. For both apps,

Unikraft is around 30%-80% faster than running the same app

in a container, and 70%-170% faster than the same app run-

ning in a Linux VM. Surprisingly, Unikraft is also 10%-60%

faster than Native Linux in both cases. We attribute these

results to the cost of system calls (aggravated by the pres-

ence of KPTI — the gap between native Linux and Unikraft

narrows to 0-50% without KPTI), and possibly the presence

of Mimalloc as system-wide allocator in Unikraft; unfortu-

nately it is not possible to use Mimalloc as kernel allocator

in Linux without heavy code changes. Note that we did try

to LD_PRELOAD Mimalloc into Redis, but the performance

improvement was not significant. We expect that the im-

provement would be more notable if Mimalloc were present

at compile time instead of relying on the preloading mech-

anism (making the compiler aware of the allocator allows

it to perform compile/link time optimizations) but we could

not perform this experiment since Mimalloc is not natively

supported by the current Redis code base.

Compared to Lupine on QEMU/KVM, Unikraft is around

50% faster on both Redis and NGINX. These results may be

due to overcutting in Lupine’s official configuration, sched-

uling differences (we select Unikraft’s cooperative scheduler

since it fits well with Redis’s single threaded approach), or

remaining bloat in Lupine that could not be removed via

configuration options. Compared to OSv, Unikraft is about

35% faster on Redis and 25% faster for nginx. Rump exhibits

poorer performance: it has not been maintained for a while,

effectively limiting the number of configurations we could

apply. For instance, we could not set the file limits because

the program that used to do it (rumpctrl) does not compile

anymore. HermiTux [55] does not support nginx; for Redis,

its performance is rather unstable. This is likely due to the

absence of virtio support, as well as performance bottlenecks

at the VMM level (HermiTux relies on uHyve, a customVMM

that, like Firecracker, does not match the performance of QE-

MU/KVM). Unlike Lupine, porting it to QEMU/KVM requires

significant code changes [25].

385

Unikraft: Fast, Specialized Unikernels the Easy Way EuroSys ’21, April 26–29, 2021, Online, United Kingdom

Binary buddy Mimalloc Bootalloc tinyalloc TLSF
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

To
ta

lB
oo

tT
im

e
(m

s)

3.
07

0.
94

0.
49

0.
87

0.
51

virtio
vfscore
ukbus

rootfs
pthreads
plat

misc
lwip
alloc

Figure 14. Unikraft Boot time for Nginx

with different allocators.

Mimalloc TLSF Binary Buddy tinyalloc
0

40

80

120

160

200

240

280

320

360

A
ve

ra
ge

Th
ro

ug
hp

ut
(x

10
00

re
q/

s)

29
1.

2

29
3.

3

27
4.

8

21
7.

1

Figure 15. nginx throughput with

different allocators.

10 100 1000 10000 60000 100000
-100

-80

-60

-40

-20

0

20

40

R
el

at
iv

e
E

xe
cu

tio
n

S
pe

ed
up

-1
2.

5
31

.8
23

.2

-2
2.

3
9.

4
0.

7

-1
5.

2
3.

1
-6

.1

-4
9.

3
-3

.2
-5

.5

-7
7.

1
-1

4.
5

-9
.8

-2
1.

0

-1
3.

8

Binary Buddy
tinyalloc
TLSF

Figure 16. Execution speedup in SQLite

Unikraft, relative to mimalloc [42].

5.4 Performance of Automatically Ported Apps

The apps tested so far have been ported manually. In this

section, we provide an initial evaluation of automatic porting.

We use SQLite and measure the time it takes to do 60K SQL

insert queries, showing the results in Figure 17.

The manually ported versions of SQLite running on top

of musl and newlib are denoted by the “native” bars in the

graph, while the “external” bar shows the performance of

SQLite with automatic porting; this means that we built

SQLite using its own build system and linked the resulting

static library with Unikraft, as discussed in §4. The results

show that the automatically ported app is only 1.5% slower

than the manually ported version, and even slightly faster

than Linux baremetal (probably due to syscall overhead and

the fact that we use TLSF as the memory allocator).

Overall, these results show that it is possible to have a

mainstream application work in Unikraft with no porting

effort (other than setting some compilation flags so that

SQLite’s build system generates a static library) and still

reap the performance benefits of running it in a unikernel.

5.5 Memory Allocators

No single memory allocator is perfect for all purposes [66],

making them a great target for specialization. To support this,

the ukalloc API allows for multiple allocators to be present

in a single image, and enables different micro-libraries to use

different allocators (� in the architecture from figure 4).

Unikraft has five memory allocators that comply with its

API: (1) the buddy memory allocator from Mini-OS [41] [28];

(2) TLSF [53], a general purpose dynamic memory alloca-

tor specifically designed to meet real-time requirements; (3)

mimalloc, a state-of-the-art, general-purpose allocator by

Microsoft; (4) tinyalloc [67], a small and simple allocator;

and (5) bootalloc, a simple region allocator for faster booting.

We built nginx with all the above allocators and measured

the Unikraft guest boot time (Figure 14), as well as the sus-

tained performance of the server (Figure 15). The difference

in boot times for the different allocators is quite large: from

0.49ms (bootalloc) to 3.07ms (buddy), hinting that a just-in-

time instantiation use-case of nginx should steer clear of the

buddy allocator. At runtime, however, the buddy allocator

performs similarly to tlsf and mimalloc, with tinyalloc taking

a 30% performance hit.

Boot performance is similar for SQLite, with the buddy

allocator being the worst and tinyalloc and tlsf among the

best (results not shown for brevity). At runtime, though, the

order depends on how many queries are run (see Figure

16): tinyalloc is fastest for less than 1000 queries by 3-30%,

becoming suboptimal with more requests, as its memory

compaction algorithms are slower; using mimalloc, instead,

provides a 20% performance boost under high load.

Results for Redis (Figure 18), further confirm that no allo-

cator is optimal for all workloads, and that the right choice

of allocator for the workload and use-case can boost per-

formance by 2.5x. In all, these results, and Unikraft’s ability

to concurrently support multiple allocators, leave room for

future work into dynamically changing allocators based on

current load in order to extract even better performance.

6 Specializing Applications

The previous section has shown that Unikraft core libraries

are fast, and that by porting existing applications to Unikraft,

we can outperform Linux.

Nevertheless, the power of Unikraft is in the ability to

further customize images in ways that are difficult to achieve

using existing solutions, be they monolithic OSes or other

unikernel projects. The highly modular nature of Unikraft

libraries makes it possible to easily replace core components

such as memory allocators, page table support, schedulers,

standard libraries and so on.

In this section we begin an initial exploration of the spe-

cialization opportunities Unikraft provides, with the main

goal of achieving better performance. Other applications of

specialization including better robustness, correctness or se-

curity, are the subject of future work. Throughout the section

we will make reference to the architecture diagram (Figure 4)

to point out which of the various specialization scenarios in

it we are covering.

6.1 Specialized Boot Code (scenario 5)

As a first experiment, we try different implementations of

guest paging support. By default, the Unikraft binary con-

tains an already initialized page-table structure which is

loaded in memory by the VMM; during boot Unikraft simply

386

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Kuenzer, et al.

Linux
(native)

newlib
(native)

musl
(native)

musl
(external)

0

1

Ti
m

e
(s

ec
on

ds
)

1.153
1.083 1.065 1.121

Figure 17. Time for 60k SQLite inser-

tions for native Linux, newlib and musl

on Unikraft and SQLite ported automati-

cally to Unikraft (musl external).

Mimalloc TLSF Binary buddy tinyalloc
0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

r.
Th

ro
ug

hp
ut

(M
ill

io
n

re
q/

s)

GET SET2.
72

2.
22 2.

47

1.
97 2.

32

1.
89

1.
01

0.
78

Figure 18. Redis throughput on

Unikraft for different allocators

(redis-benchmark, 30 conns, 100k

requests, pipelining level of 16.)

64 128 256 512 1024 1500
Packet Size (Bytes)

0

2M

4M

6M

8M

10M

12M

14M

Th
ro

ug
ho

ut
(M

p/
s)

Rhea with vhost-user
Rhea with vhost-net
Linux DPDK with vhost-user
Linux DPDK with vhost-net

Figure 19. TX throughput comparison

of Unikraft versus DPDK in a Linux VM

for vhost-user aand vhost-net.

4 8 16 32 64
Block Size (KB)

1

10

100

1000

10000

60000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

linux-kvm (read)
linux-kvm (write)

unikraft-kvm (read)
unikraft-kvm (write)

Figure 20. 9pfs latency for read and

write operations, compared to Linux.

sta
tic

1GB

dyn
amic

32MB

dyn
amic

64MB

dyn
amic

128MB

dyn
amic

256MB

dyn
amic

512MB

dyn
amic

1GB

dyn
amic

2GB

dyn
amic

3GB
0

50

100

150

B
oo

tT
im

e
in

M
ic

ro
se

co
nd

s

29

46 53 55 57 62

71

93

11
4

Figure 21. Unikraft boot times w/ static

and dynamic page table initialization.

SHFS VFS VFS
(No mitig.)

VFS
0

1000

2000

3000

4000

5000

A
ve

ra
ge

#
TS

C

Unikraft Linux

FILE EXISTS NO FILE

30
8

(8
6n

s)

29
1

(8
1n

s)

16
37

(4
55

ns
)

22
19

(6
17

ns
)

19
68

(5
47

ns
)

32
77

(9
10

ns
)

26
47

(7
35

ns
)

40
54

(1
12

6n
s)

Figure 22. Perf. with a specialized

filesystem and removing the VFS layer.

enables paging and updates the page-table base register to

point to the right address. This is enough for most appli-

cations, and provides fast boot performance (30us boot for

1GB of RAM, see Figure 21). Unikraft also has dynamic page

management support which can be enabled when apps need

to alter their virtual address space explicitly (e.g. via mmap);

when this is used the entire page-table is populated at boot

time. Figure 21 shows that a guest with a 32MB dynamic

page-table takes slightly longer to boot than one with a pre-

initialized 1GB page-table, and that the boot time increases

proportionally with the amount of memory.

Finally, Unikraft makes it possible for the guest to run in

protected (32 bit) mode, disabling guest paging altogether.

This could help run legacy 32 bit applications, or reduce the

cost of TLB misses in high-CPU contention scenarios.

6.2 Networking Performance (scenario 7)

The uknetdev API is one of the core libraries of Unikraft,

and took the longest to design and implement. Our goal was

to enable high-performance networking regardless of the

virtualization technology, and enable all other code running

on top of uknetdev (e.g., lwip) to be sheltered from platform-

specific changes.

On KVM, the uknetdev API can be configured to use

the standard virtio-net protocol and tap devices in the host

(vhost-net, the default configuration we used so far), but it

can also offload the datapath to vhost-user (a DPDK-based

virtio transport running in host userspace) for higher per-

formance – at the cost of polling in the host.

To understand how efficient the uknetdev API is, we

wrote a simple app that sends as many packets as possi-

ble, and measured the achieved throughput on a different

machine running a DPDK testpmd application. We var-

ied packet sizes and measured throughput, comparing the

uknetdevAPI to DPDK running in a Linux VM (DPDK is cur-

rently the gold standard for high-performance networking).

The results are shown in Figure 19, showing that uknetdev

with vhost-user offloading achieves similar throughput than

DPDK running in a Linux VM.

6.3 VFS and Filesystem Specialization (scenario 3)

In this specialization experiment, we aim to obtain high

performance out of a web cache application by removing

Unikraft’s vfs layer (vfscore) and hooking the application

directly into a purpose-built specialized hash-based filesys-

tem called SHFS, ported from [39].

To benchmark performance, we measure the time it takes

to look up a file and open a file descriptor for it. For this

purpose, we prepare a small root filesystem with files at

the filesystem root. We measure the average time taken to

do one open request out of a loop of 1000 open requests,

and consider two cases: open() requests where a file exists,

and open() requests where it does not. We compare this

specialized setup versus running the same application in a

Linux VMwith an initrd and the files in RAM, and also versus

the application running on Unikraft on top of vfscore (so

no specialization).

The results in Figure 22 show that running the application

in Unikraft without specialization already comes with some

gains with respect to running it in a Linux VM; however,

the big gain comes when running the specialized unikernel:

387

Unikraft: Fast, Specialized Unikernels the Easy Way EuroSys ’21, April 26–29, 2021, Online, United Kingdom

in this case, we see a 5-7x reduction compared to the non-

specialized version, and even higher compared to Linux.

6.4 Specializing a key-value store (Scenario 7)

We implemented a UDP-based in-memory key-value store

using the recvmsg/sendmsg syscalls and then created a lwip-

based Unikraft image based on it, as well as Linux binaries.

We measured the request rate each version can sustain,

showing the results in Table 4. Unikraft’s performance (LWIP)

is slightly under that of a Linux guest (Single) and under half

of baremetal Linux (Single); nevertheless, performance is

low across the board.
Setup Mode Throughput

Linux baremetal
Single 769 K/s

Batch 1.1 M/s

Linux guest

Single 418 K/s

Batch 627 K/s

DPDK 6.4 M/s

Unikraft guest

LWIP 319 K/s

uknetdev 6.3 M/s

DPDK 6.3 M/s

Table 4. Performance of a specialized UDP-based in-memory

key-value store on Unikraft vs. Linux.

To improve Linux’s performance, we must amortize the

cost of system calls (a single packet is sent per syscall in

the basic version). To this end we used batched versions

of the msg syscalls, leading to a roughly 50% improvement

in both the baremetal and guest cases. To further improve

performance, we ported our app to run on top of DPDK,

which requires a major overhaul of the app so that it fits in

the DPDK framework—this boosts guest performance to 6.4

million req/s, but at the cost of using two cores in the VM,

one exclusively for DPDK.

For Unikraft, we remove the lwip stack and scheduler al-

together (via Unikraft’s Kconfig menu) and code against the

uknetdev API, which we use in polling mode. Our special-

ized unikernel required similar porting effort to the DPDK

one. Its performance matches the DPDK performance but

it does so using much fewer resources: it only needs one

core instead of two for DPDK, it has an image size of 1.4MB

compared to about 1GB, and it boots in 80ms instead of a

few seconds.

7 Discussion

Do Unikernels trade-off security? Unikernels tradition-

ally have had serious security issues, but we argue that those

have been implementation artifacts rather than fundamen-

tal problems. In fact, unikernels are used commercially in

security-minded domains such as automotive because their

high level of specialization means that they provide a small

Trusted Computing Base. Having said that, past unikernel

projects have failed to provide standard security features

commonly found in standard OSes (e.g., stack and page pro-

tection, ASLR, etc.); Unikraft already supports several of

these including CFI [3] and Address Sanitisation [70–72],

as well as initial support for hardware compartmentaliza-

tion with Intel MPK [1]. It should therefore be possible to

achieve good security while retaining high performance with

Unikraft.

Debugging One of the common downsides of specialized

operating systems is how difficult it is to debug them; uniker-

nels, for instance, are infamous for not having nearly as rich

a set of tools for debugging as Linux does.

Unikraft has a number of facilities for helping with this,

beyond the fact that its images can of course be run with gdb.

First, Unikraft comes with a ukdebug micro-library that en-

ables printing of key messages at different (and configurable)

levels of criticality. This library can also enable/disable as-

sertions, and print the bottom address of the stack in its

messages. Second, Unikraft comes with a trace point system

also available through ukdebug’s menu options. Third, the

ukdebug micro-library provides an abstraction to plug in

disassemblers; so far, a port of the Zydis disassembler [7]

provides such support for x86.

Finally, Unikraft comes with a linuxu (Linux user-space)

platform target: this allows users, during development, to

build their specialized OSes for this target, leveraging Linux’s

rich set of debugging tools in the process. Once the image

runs as expected, users can then choose a different platform,

(e.g., Xen) for actual deployment.

Processes (or lack thereof) in Unikraft. Unikraft cur-

rently does not support processes and their related functions

(e.g., fork() and exec()), although they could be imple-

mented by cloning VMs [81, 82] or emulating them via intra-

address space isolation, e.g., Iso-Unik [43] with Intel MPK.

Unikraft does have page table support as a micro-library

which could be used as the basis to implement fork and

processes in general. Many modern applications however no

longer depend on processes to function [5], and those that do

often provide a configurable, thread-based alternative (e.g.,

nginx).

8 Related Work

Over time, a lot of research and systems work has targeted

software specialization in various forms; we cover these next.

Unikernels and Library OSes. Recent years have seen a

large number of library OS or unikernel projects appear. Most

are application-specific or programming language-specific

projects: runtime.js [65] (JavaScript), includeOS [9] (C++),

HaLVM [20] (Haskell), LING or Erlang on Xen [23] (Erlang),

MiniPython [49] (MicroPython), ClickOS [51][52] (ClickMod-

ular Router/Network Function Virtualization (NFV)), and

MiniCache [39][38](content cache). LightVM [48] built tiny

unikernels and customized the Xen toolstack to achieve low

boot times. In contrast to all of these, Unikraft supports a

range of mainstream applications and runtimes efficiently.

388

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Kuenzer, et al.

MirageOS [46] is an OCaml-specific unikernel focusing

on type-safety, so does not support mainstream applications,

and its performance, as shown in our evaluation, is sub-par

with respect to other unikernel projects andUnikraft. Further,

while it provides a rather small kernel (Mini-OS [41]), it is

still monolithic, and so not easily customizable.

UniK [29] provides awrapper aroundmultiple other uniker-

nel projects. Containers and Kata Containers [62] (merged

in 2017) [76] provide Linux-based virtual machines (VMs)

customized to run containers within them. Drawbridge [59]

is a library OS that can run the latest releases of Microsoft

applications. Graphene [73] is a library OS targeting efficient

execution of single and multi-process applications.

Rump[35] introduces the Anykernel concept, converting

parts of the NetBSD kernel to run in a single address space

and dealing with issues such as supporting fork and execve.

It provides good compatibility for standard applications, but

its reliance on a monolithic kernel means there is not much

room for specialization. SEUSS [10] uses Rump to build a

Function as a Service (FaaS) system. HermiTux [55] is a

unikernel providing binary compatibility through syscall

re-writing. Unlike Unikraft, HermiTux is not customizable,

and its reliance on binary compatibility comes with perfor-

mance costs, as shown previously. Finally, OSv [37] is an

OS focusing on cloud computing that, like HermiTux, comes

with binary compatibility support, as well as support for

many programming languages and platforms. Its kernel is

also monolithic, making it difficult to customize.

Stack and API Specialization. A number of works have

looked at specializing the software and network stack for

various use cases. Sandstorm [50] introduced an extremely

(hand-)customized network stack for supporting high per-

formance web and Domain Name System (DNS) servers.

The null-Kernel [44], like Unikraft, provides interfaces at

different levels of abstraction from the hardware, and allows

applications/processes to combine these different interfaces;

however, they provide no implementation nor details about

application compatibility.

Application-Specific Software Stacks [13] implements com-

piler extensions to automatically eliminate code even for

interpreted languages and shared libraries, and is comple-

mentary to Unikraft. Another complementary work is HALO

[66], an automated post-link optimization tool that analyzes

how memory allocations are made to specialize memory-

management routines and thus increase spatial locality.

Kernel Bypass. In order to specialize for I/O-bound appli-

cations and workloads, a number of works have been pro-

posed that partially or fully bypass the kernel to increase

throughput. Demikernel [80] is a new library OS specifically

targeting kernel-bypass devices. IX [6] is a novel operating

system targeting high throughput and low latency. Arakis

[58] is also a new OS where applications have direct access

to virtualized I/O devices, while the kernel provides network

and disk protection but is not involved in every operation.

Parakernel [18], makes bypass a first-class citizen, allowing

processes direct access to non-shared devices, and transpar-

ently multiplexes access to devices shared by multiple pro-

cesses. Finally, MDev-NVMe [57] implements pass-through

for NVMe SSDs. Unlike these approaches, Unikraft’s cus-

tomizable APIs means that it can achieve high performance

without having to bypass the kernel.

Bridging the Userspace / Kernel Divide. A number of

projects are aimed at running an application and the Linux

kernel in a single memory address space in order to reduce

domain switch costs, the way unikernels do. User Mode

Linux (UML) [15], for instance, allows for running the kernel

as a user space process. LibOS [26] runs the kernel network

stack as a shared library in user-space. Linux Kernel Library

(LKL) [60] transforms the kernel into a library that can be

run as a virtual machine. Unikernel Linux (UKL) [63] takes

a user-space application and statically compiles it into the

Linux kernel, using a shim layer to redirect glibc syscalls

to kernel functions (but adds 45MB of glibc code to every

image). These approaches avoid user-kernel space switches,

but do not specialize the actual software stack. More recent

work called Lupine [40] uses the Linux kernel to load an

application binary in kernel mode, thus eliminating the sys-

tem call overhead; it also makes use of kernel configuration

options to discard unnecessary features, thus reducing the

image size. We have shown, however, that it underperforms

when compared to Unikraft.

9 Conclusions

We have introduced Unikraft, a novel micro-library OS tar-

geting high performance through full and easy specialization

of unikernel images. In addition to yielding benefits to un-

modified applications (e.g., faster boot times, lower memory

consumption, etc.), slight modifications to applications to

comply with Unikraft’s APIs result in even higher perfor-

mance.

As future work, we are continuing the effort to provide

better syscall compatibility in order to transparently sup-

port even more mainstream applications. We also aim to

leverage Unikraft’s modularity for security purposes, coding

micro-libraries in memory-safe or even statically-verifiable

languages and using compartmentalization techniques to

maintain safety properties as the image is linked together.

Acknowledgments

We would like to thank the anonymous reviewers and our

shepherd, Manuel Costa, for their comments and insights. A

very special thank you goes to the Unikraft OSS community

for their substantial past and ongoing contributions. This

work was partly funded by EU H2020 grant agreements

825377 (UNICORE) and 871793 (ACCORDION). Costin Raiciu

was partly supported by gift funding from VMWare.

389

Unikraft: Fast, Specialized Unikernels the Easy Way EuroSys ’21, April 26–29, 2021, Online, United Kingdom

Artifact Appendix

We have spent a considerable effort trying to ensure that all

of the experiments in this paper are reproducible. This ap-

pendix provides thorough information on how to run them;

the Artifact Evaluation (AE) repo can be found at [22]. In

addition, we prove tables summarizing all experiments with

a rough estimate of how much time it takes for each to run.

9.1 Hardware Requirements

Before you can run these experiments, you will need to pre-

pare 3 physical host environments: physical hosts as opposed

to virtual machines are recommended as they provide better

performance. In the paper, we used three different setups:

1. A Linux host (Debian Buster) with KVM enabled and

Linux kernel 4.19. This host is used for most experi-

ments. We use the 4.19 kernel because HermiTux will

not run with newer versions, as noted in [27].

2. A Linux host (Debian Buster) with Linux kernel 4.19

that has an 10gbit/s Ethernet cable connected to the

first host. We use it for the DPDK network experi-

ments Figure 19 and Table 4 and experiments where we

need to specifically setup the CPU frequency. See sec-

tion 9.2 for further details.

3. Xen host (Debian Buster) used for Xen 9pfs experi-

ments Figure 20.

A single server can be used for almost all experiments,

though it would require different Linux kernel parameters,

or the Xen hypervisor and rebooting to switch from one set

up to another. The exception is the DPDK experiment, which

requires two servers connected to each other via a 10Gb link.

As a reminder, all of our results were run on inexpensive

(roughly €800) Shuttle SH370R6 [68] computer with an Intel

i7 9700K 3.6 GHz (4.9 Ghz with Turbo Boost, 8 cores) and

32GB of RAM. For the DPDK experiment we use two of these

connected via a direct cable and a pair of Intel X520-T2 [33]

cards with the 82599EB chipset.

9.2 Software Requirements

All experiments were run on a physical host with Debian

Buster and Linux 4.19 installed. All install and preparation

scripts in the AE repository target this distribution and ker-

nel version.

For all set ups, we disabled Hyper-Threading (noht), iso-

lated 4 CPU cores (e.g. isocpus=2-6), switched off the IOMMU

(intel_iommu=off), and disabled IPv6 (ipv6.disable=1).

This can be done by setting kernel boot parameters with your

bootloader, for instance with Grub (/etc/default/grub):

GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=2-4 \

noht \

intel_iommu=off \

ipv6.disable=1"

or with syslinux/pxelinux:

Figure Description Time

Fig 1 Linux kernel dependency graph 0h 50m

Fig 2 NGINX Unikraft dependency graph 0h 5m

Fig 3 "Hello World" Unikraft dependency

graph

0h 1m

Fig 5 Syscalls required by a set of 30 popu-

lar server applications versus syscalls

currently supported by Unikraft

0h 45m

Fig 7 Syscall support for top 30 server apps.

All apps are close to being supported,

and several already work even if some

syscalls are stubbed (SQLite, NGINX)

0h 45m

Fig 8 Image sizes of Unikraft applications.

We include permutations with and

without LTO and DCE

0h 1m

Fig 9 Image sizes for representative appli-

cations with Unikraft and other OSes,

stripped, without LTO and DCE

0h 5m

Fig 10 Boot time for Unikraft images with

different virtual machine monitor

0h 9m

Fig 11 Minimum memory needed to run

different applications using different

OSes, including Unikraft

0h 50m

Fig 12 Redis performance tested with the

redis-benchmark, (30 connections,

100k requests, pipelining level of 16)

0h 9m

Fig 13 NGINX (and Mirage HTTP-reply) per-

formance tested with wrk (1 minute,

14 threads, 30 conns, static 612B

HTML page)

0h 50m

Fig 14 Unikraft Boot time for NGINX with

different memory allocators

0h 8m

Fig 15 NGINX throughput with different

memory allocators

0h 30m

Fig 16 Execution speedup in SQLite Unikraft,

relative to mimalloc

0h 21m

Fig 17 Time for 60k SQLite insertions with

native Linux,newlib and musl on

Unikraft (marked as native) and

SQLite ported automatically to

Unikraft (musl external)

0h 6m

Fig 18 Throughput for Redis Unikraft, with

varying memory allocators and re-

quest type

0h 5m

Fig 19 TX throughput comparison of

Unikraft versus DPDK in a Linux VM

0h 30m

Fig 20 9pfs latency for read and write opera-

tions, compared to Linux

2h 0m

Fig 21 Unikraft boot times with static and

dynamic initialization of page tables

0h 3m

Fig 22 Filesystem specialization and removal

of the vfs layer yields important per-

formance gains for a web cache

0h 5m

390

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Kuenzer, et al.

Table Description Time

Tab 1 Cost of binary compatibility/syscalls

with and without security mitigations

0h 25m

Tab 2 Results from automated porting based

on externally-built archives when

linked against Unikraft using musl

and newlib. We show whether the

port succeeded with the glibc com-

patibility layer ("compat layer") and

without it ("std").

0h 25m

Tab 4 Performance of a specialized UDP-

based in-memory key-value store on

Unikraft vs. Linux

0h 25m

Text Description Time

Text 1 Unikernel boot time baseline 0h 21m

Text 2 Measures 9pfs boot time overhead 0h 5m

LABEL item_kernel0

MENU LABEL Linux

MENU DEFAULT

KERNEL vmlinuz-4.19.0

APPEND isolcpus=2-6 noht intel_iommu=off ipv6.disable=1

On Xen we use the following parameters (please adjust the

amount of pinned memory for Dom0 according to your avail-

able RAM, we gave the half of 32GB RAM to Dom0; We also

pinned 4 CPU cores to Dom0): Grub (/etc/default/grub):

GRUB_CMDLINE_LINUX_XEN_REPLACE_DEFAULT=""

GRUB_CMDLINE_LINUX_XEN_REPLACE="earlyprintk=xen \

console=hvc0 \

ipv6.disable=1"

GRUB_CMDLINE_XEN=""

GRUB_CMDLINE_XEN_DEFAULT="smt=0 dom0_max_vcpus=4 \

dom0_vcpus_pin cpufreq=xen \

dom0_mem=15360M,max:16384M \

gnttab_max_frames=256"

Please note that the following experiments require additional

kernel parameters e.g., to enable specific CPU frequency

scaling governors: tables 1 and 4 and figs. 19 and 22.

9.3 Getting Started

1. Before running any of these experiments, prepare your

host with the recommendations detailed above.

2. Many of the experiments use Docker as an intermedi-

ate tool for creating build and test environments (along

with testing Docker itself). Please install Docker [16]

on your system.

3. Once Docker is installed, clone our AE repository:

git clone \

https://github.com/unikraft/eurosys21-artifacts.git

4. All experiments should be prepared first, which in-

stalls necessary tools and downloads additional re-

sources, before they can run. This can be done by call-

ing run.sh fig_XX prepare (more details below) for

a single experiment or run.sh prepare for all experi-

ments. (Note: The preparation step for all experiments

usually exceeds several hours.)

5. Once prepared, simply call the relevant experiment

you wish to re-create using the run.sh script.

We have wrapped all the individual experiments with the

run.sh tool. This script will install the necessary dependen-

cies for all experiments (excluding Docker) for Debian Buster.

Each experiment, and more specifically its sub-directory in

experiments/, is populated with a README.md which in-

cludes more details about the individual experiment.

9.4 Notes

• All experiments should be run as the root user on

the host as it will require modifications to the host

and running commands with elevated privileges, e.g.

creating and destroying VMs, setting limits in /proc,

etc.

• We use intermediate Docker containers for building

images and accessing pre-built binaries for many of

the experiments. In addition to this, this repository

clones the Linux kernel to make changes for testing.

As a result, expected disk storage utilized to conduct

all experiments is 50GB.

• The preparation step for all experiments usually ex-

ceeds several hours.

• Experiments cannot be run in parallel due to overlap-

ping CPU core affinities, which will affect measure-

ments.

• Each experiment has its own sub-directory and a Makefile

script within it. We further provide a main run.sh

script that wraps all experiments.

• Some experiments (e.g., Figure 22) produce some error

messages but still finish and correctly produce the plot;

if this is the case, this is documented in an experiment’s

sub-directory, in its own README.md file.

• All plots are saved into the global /plots directory

when run via run.sh. When using the individual ex-

periment’s Makefile, it is saved to the experiment’s

folder.

9.5 Beyond the Paper

The AE repository only contains the performance evaluation

of Unikraft. In addition to this appendix and the repo, the

Unikraft project provides extensive documentation [75] on

how to use Unikraft in real-world environments. In addition,

interested researchers are welcome to join the community

via the Xen project mailing list [79] and GitHub [21].

391

Unikraft: Fast, Specialized Unikernels the Easy Way EuroSys ’21, April 26–29, 2021, Online, United Kingdom

References
[1] Intel® 64 and IA-32 Architectures Software Developer’s Manual. Vol-

ume 3A, Section 4.6.2.

[2] Newlib: a C library intended for use on embedded systems. https:

//sourceware.org/newlib/. Online; accessed Jan, 25 2021.

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-

flow integrity. In Proceedings of the 12th ACM Conference on Computer

and Communications Security, CCS ’05, pages 340–353, New York, NY,

USA, 2005. Association for Computing Machinery.

[4] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-

cracker: Lightweight virtualization for serverless applications. In Pro-

ceedings of the 17th USENIX Symposium on Networked Systems Design

and Implementation, NSDI'20), pages 419–434, 2020.

[5] Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy

Roscoe. A fork() in the road. In Proceedings of the Workshop on Hot

Topics in Operating Systems, HotOS'19, page 14–22, New York, NY,

USA, 2019. Association for Computing Machinery.

[6] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos

Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operating

system for high throughput and low latency. In Proceedings of the 11th

USENIX Symposium on Operating Systems Design and Implementation,

OSDI'14, pages 49–65, Broomfield, CO, 2014. USENIX Association.

[7] Florian Bernd and Joel Höner. Zydis: Fast and lightweight x86/x86-64

disassembler library. https://zydis.re/. Online; accessed Jan, 25 2021.

[8] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as

a case study: Its extracted software architecture. In Proceedings of

the 21st International Conference on Software Engineering, ICSE ’99,

page 555–563, New York, NY, USA, 1999. Association for Computing

Machinery.

[9] Alfred Bratterud, Alf-Andre Walla, Harek Haugerud, Paal E. Engelstad,

and Kyrre Begnum. IncludeOS: A minimal, resource efficient unikernel

for cloud services. In Proceedings of the 7th IEEE International Confer-

ence on Cloud Computing Technology and Science, CloudCom'15. IEEE,

November 2015.

[10] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,

and Jonathan Appavoo. SEUSS: Rapid serverless deployment using

environment snapshots. CoRR, abs/1910.01558, 2019.

[11] Jonathan Corbet. The rapid growth of io_uring. https://lwn.net/

Articles/810414/. Online; accessed Jan, 25 2021.

[12] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. Oscar: A

practical page-permissions-based scheme for thwarting dangling point-

ers. In Proceedings of the 26th USENIX Security Symposium, USENIX

Security'17, pages 815–832, Vancouver, BC, 2017. USENIX Association.

[13] Nicolai Davidsson, Andre Pawlowski, and Thorsten Holz. Towards

automated application-specific software stacks. In Proceedings of the

24th European Symposium on Research in Computer Security, pages

88–109, 2019.

[14] Debian. Debian Popularity Contest. https://popcon.debian.org/. On-

line; accessed Jan, 25 2021.

[15] Jeff Dike. A user-mode port of the linux kernel. In Proceedings of the

4th Annual Linux Showcase and Conference (Volume 4), ALS'00, pages

7–7, Berkeley, CA, USA, 2000. USENIX Association.

[16] Docker Docs. Get Docker. https://docs.docker.com/get-docker/. On-

line; accessed March, 26 2021.

[17] Adam Dunkels. Design and implementation of the lwip stack. 2001.

[18] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. I/O Is Faster Than the

CPU: Let’s Partition Resources and Eliminate (Most) OS Abstractions.

In Proceedings of the Workshop on Hot Topics in Operating Systems,

HotOS'19, pages 81–87, New York, NY, USA, 2019. ACM.

[19] Dario Faggioli. Virtual-machine scheduling and scheduling in virtual

machines. https://lwn.net/Articles/793375/, July 2019. Online; accessed

Jan, 25 2021.

[20] Galois Inc. The haskell lightweight virtual machine (halvm). https:

//github.com/GaloisInc/HaLVM, 2008. Online; accessed Jan, 25 2021.

[21] GitHub. A Unikernel SDK. Extreme Specialization for Security and

Performance. https://github.com/unikraft. Online; accessed March, 26

2021.

[22] GitHub. Artifacts, including experiments and graphs, for the paper:

"Unikraft: Fast, Specialized Unikernels the Easy Way" (EuroSys’21).

https://github.com/unikraft/eurosys21-artifacts. Online; accessed

March, 26 2021.

[23] GitHub. Erlang on Xen. https://github.com/cloudozer/ling. Online;

accessed Jan, 25 2021.

[24] GitHub. Firecracker GitHub issue #1034: Slower networking of OSv on

firecracker vs QEMU/KVM. https://github.com/firecracker-microvm/

firecracker/issues/1034. Online; accessed Jan, 25 2021.

[25] GitHub. Hermitux GitHub issue #2: It does not work on qemu. https:

//github.com/ssrg-vt/hermitux/issues/2. Online; accessed Jan, 25 2021.

[26] Github. linux-libos-tools. https://github.com/libos-nuse/linux-libos-

tools. Online; accessed Jan, 25 2021.

[27] GitHub. Performance issue with Redis on recent Linux kernels. https:

//github.com/ssrg-vt/hermitux/issues/12. Online; accessed March, 26

2021.

[28] Github. Xen Minimal OS - Memory management related func-

tions. https://github.com/sysml/mini-os/blob/master/mm.c. Online;

accessed Jan, 25 2021.

[29] Github.com. The Unikernel and MicroVM Compilation and Deploy-

ment Platform. https://github.com/solo-io/unik. Online; accessed Jan,

25 2021.

[30] Google. Cloud TPU – Train and run machine learning models faster

than ever before. https://cloud.google.com/tpu. Online; accessed Jan,

25 2021.

[31] Google. Protocol Buffers – Google’s data interchange format. https:

//github.com/protocolbuffers/protobuf.

[32] Habana. 100% AI. https://habana.ai/. Online; accessed Jan, 25 2021.

[33] Intel. Ethernet-Converged-Network-Adapter X520-T2.

https://ark.intel.com/content/www/de/de/ark/products/69655/intel-

ethernet-converged-network-adapter-x520-t2.html. Online; accessed

Mar, 26 2021.

[34] Intel. Intel® Movidius™ Vision Processing Units (VPUs).

https://www.intel.com/content/www/us/en/products/processors/

movidius-vpu.html. Online; accessed Jan, 25 2021.

[35] Antti Kantee. Kernel file systems as userspace programs. September

2007.

[36] Antti Kantee. Flexible Operating System Internals: The Design and

Implementation of the Anykernel and Rump Kernels. PhD thesis, Aalto

University, 2012.

[37] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don

Marti, and Vlad Zolotarov. OSv–Optimizing the Operating System for

Virtual Machines. In Proceedings of the 2014 USENIX Annual Technical

Conference, USENIX ATC'14, pages 61–72, Philadelphia, PA, June 2014.

USENIX Association.

[38] Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri

Volchkov, Florian Schmidt, Kenichi Yasukata, Michio Honda, and Felipe

Huici. Unikernels everywhere: The case for elastic cdns. In Proceedings

of the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, VEE ’17, pages 15–29, New York, NY, USA,

2017. ACM.

[39] Simon Kuenzer, Joao Martins, Mohamed Ahmed, and Felipe Huici.

Towards minimalistic, virtualized content caches with minicache. In

Proceedings of the 2013 ACM Workshop on Hot Topics in Middleboxes

and Network Function Virtualization, HotMiddlebox'13, pages 13–18.

ACM, 2013.

[40] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. A

linux in unikernel clothing. In Proceedings of the Fifteenth European

Conference on Computer Systems, EuroSys ’20, New York, NY, USA,

2020. Association for Computing Machinery.

392

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Kuenzer, et al.

[41] Lars Kurth and Russell Pavlicek. Xen Project Wiki Mini-OS. https:

//wiki.xenproject.org/wiki/Mini-OS, 2018. Online; accessed Jan, 25

2021.

[42] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. Mimalloc: Free

list sharding in action. InAsian Symposium on Programming Languages

and Systems, pages 244–265. Springer, 2019.

[43] Guanyu Li, Dong Du, and Yubin Xia. Iso-unik: lightweight multi-

process unikernel through memory protection keys. Cybersecur.,

3(1):11, 2020.

[44] James Litton, Deepak Garg, Peter Druschel, and Bobby Bhattacharjee.

Composing abstractions using the null-kernel. In Proceedings of the

Workshop on Hot Topics in Operating Systems, HotOS'19, pages 1–6,

New York, NY, USA, 2019. ACM.

[45] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas

Gazagnaire, David Sheets, Dave Scott, Richard Mortier, Amir

Chaudhry, Balraj Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie.

Jitsu: Just-In-Time Summoning of Unikernels. In 12th USENIX Sym-

posium on Networked Systems Design and Implementation, NSDI ’15,

pages 559–573, Oakland, CA, 2015. USENIX Association.

[46] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David

Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,

and Jon Crowcroft. Unikernels: Library operating systems for the

cloud. In Proceedings of the 18th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS'13). ACM, 2013.

[47] Anil Madhavapeddy and David J. Scott. Unikernels: Rise of the Virtual

Library Operating System. Queue, 11(11):30:30–30:44, December 2013.

[48] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-

zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My

vm is lighter (and safer) than your container. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17, pages 218–233,

New York, NY, USA, 2017. ACM.

[49] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-

zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My

VM is lighter (and safer) than your container. In Proceedings of the

26th ACM Symposium on Operating Systems Principles, SOSP'17. ACM,

2017.

[50] Ilias Marinos, Robert N.M. Watson, and Mark Handley. Network

Stack Specialization for Performance. In Proceedings of the 2014 ACM

Conference on Computer Communication, SIGCOMM ’14, pages 175–

186, New York, NY, USA, 2014. ACM.

[51] Joao Martins, Mohamed Ahmed, Costin Raiciu, and Felipe Huici. En-

abling fast, dynamic network processing with clickos. In Proceedings

of the 2nd ACM SIGCOMMWorkshop on Hot Topics in Software Defined

Networking, HotSDN'’13. ACM, 2013.

[52] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,

Michio Honda, Roberto Bifulco, and Felipe Huici. ClickOS and the art

of network function virtualization. In Proceedings of the 11th USENIX

Conference on Networked Systems Design and Implementation, NSDI'14,

pages 459–473. USENIX, 2014.

[53] MiguelMasmano, Ismael Ripoll, Alfons Crespo, and Jorge Real. TLSF: A

new dynamic memory allocator for real-time systems. In Proceedings of

the 16th Euromicro Conference on Real-Time Systems, ECRTS'04, pages

79–88. IEEE, 2004.

[54] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy

Ravindran. A binary-compatible unikernel. In Proceedings of the 15th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, VEE 2019, pages 59–73, New York, NY, USA, 2019. ACM.

[55] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy

Ravindran. A binary-compatible unikernel. In Proceedings of the 15th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments (VEE), VEE'19, pages 59–73. ACM, 2019.

[56] Openwall. Implement glibc chk interfaces for ABI compatibility. https:

//www.openwall.com/lists/musl/2015/06/17/1. Online; accessed Jan,

25 2021.

[57] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong, Yu Xu, and Haib-

ing Guan. Mdev-nvme: A nvme storage virtualization solution with

mediated pass-through. In Proceedings of the 2018 USENIX Conference

on Usenix Annual Technical Conference, USENIX ATC'18, page 665–676,

USA, 2018. USENIX Association.

[58] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind

Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The

operating system is the control plane. In 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14), pages 1–16,

Broomfield, CO, October 2014. USENIX Association.

[59] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,

and Galen C. Hunt. Rethinking the library os from the top down.

In Proceedings of the Sixteenth International Conference on Architec-

tural Support for Programming Languages and Operating Systems, AS-

PLOS'16, page 291–304, New York, NY, USA, 2011. Association for

Computing Machinery.

[60] Octavian Purdila, Lucian Grijincu, and Nicolae Tapus. Lkl: The linux

kernel library. Proceedings of the Roedunet International Conference,

pages 328 – 333, 07 2010.

[61] Anh Quach, Rukayat Erinfolami, David Demicco, and Aravind Prakash.

A multi-os cross-layer study of bloating in user programs, kernel and

managed execution environments. In Proceedings of the 2017 Workshop

on Forming an Ecosystem Around Software Transformation, FEAST ’17,

page 65–70, New York, NY, USA, 2017. Association for Computing

Machinery.

[62] Alessandro Randazzo and Ilenia Tinnirello. Kata containers: An emerg-

ing architecture for enabling mec services in fast and secure way. In

Proceedings of the 6th International Conference on Internet of Things:

Systems, Management and Security, IOTSMS'19, pages 209–214. IEEE,

2019.

[63] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drep-

per, Richard Jones, Orran Krieger, Renato Mancuso, and Larry Wood-

man. Unikernels: The next stage of linux’s dominance. In Proceedings

of the Workshop on Hot Topics in Operating Systems, HotOS ’19, pages

7–13, New York, NY, USA, 2019. ACM.

[64] Luigi Rizzo. netmap: A novel framework for fast packet I/O. In

Proceedings of the 21st USENIX Annual Technical Conference, USENIX

ATC'12, pages 101–112. USENIX, 2012.

[65] runtimejs.org. JavaScript Library Operating System for the Cloud.

http://runtimejs.org/. Online; accessed Jan, 25 2021.

[66] Joe Savage and Timothy M. Jones. Halo: Post-link heap-layout optimi-

sation. In Proceedings of the 18th ACM/IEEE International Symposium

on Code Generation and Optimization, CGO'20, page 94–106, New York,

NY, USA, 2020. Association for Computing Machinery.

[67] Karsten Schmidt. malloc, free replacement for unmanaged, linear mem-

ory situations. https://github.com/thi-ng/tinyalloc. Online; accessed

Jan, 25 2021.

[68] Shuttle. SH370R6 XCP Cube. http://global.shuttle.com/products/

productsDetail?productId=2265. Online; accessed Mar, 26 2021.

[69] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran.

Intra-unikernel isolation with intel memory protection keys. In Pro-

ceedings of the 16th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments, VEE ’20, page 143–156, New York,

NY, USA, 2020. Association for Computing Machinery.

[70] The Linux Kernel Development Community. The kernel address

sanitizer (KASAN). https://www.kernel.org/doc/html/v5.10/dev-tools/

kasan.html. Online; accessed Jan, 25 2021.

[71] The Linux Kernel Development Community. The kernel concurrency

sanitizer (KCSAN). https://www.kernel.org/doc/html/v5.10/dev-tools/

kcsan.html. Online; accessed Jan, 25 2021.

[72] The Linux Kernel Development Community. The undefined behavior

sanitizer (UBSAN). https://www.kernel.org/doc/html/v5.10/dev-tools/

ubsan.html. Online; accessed Jan, 25 2021.

393

Unikraft: Fast, Specialized Unikernels the Easy Way EuroSys ’21, April 26–29, 2021, Online, United Kingdom

[73] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain,

William Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni,

Daniela Oliveira, and Donald E. Porter. Cooperation and security

isolation of library oses for multi-process applications. In Proceedings

of the 9th European Conference on Computer Systems, EuroSys'14, pages

9:1–9:14, New York, NY, USA, 2014. ACM.

[74] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E.

Porter. A study of modern linux api usage and compatibility: What

to support when you’re supporting. In Proceedings of the Eleventh

European Conference on Computer Systems, EuroSys ’16, New York, NY,

USA, 2016. Association for Computing Machinery.

[75] unikraft.org. Unikraft’s Documentation. http://docs.unikraft.org/.

Online; accessed March, 26 2021.

[76] Arjan Van de Ven. An introduction to Clear Containers. https://lwn.

net/Articles/644675/. Online; accessed Jan, 25 2021.

[77] Eric Van Hensbergen and Ron Minnich. Grave robbers from outer

space using 9p2000 under linux. In Proceedings of the USENIX Annual

Technical Conference, ATC’05, page 45, USA, 2005. USENIX Association.

[78] Dan Williams and Ricardo Koller. Unikernel Monitors: Extending

Minimalism Outside of the Box. In 8th USENIX Workshop on Hot

Topics in Cloud Computing, HotCloud ’16, Denver, CO, 2016. USENIX

Association.

[79] Xen Project. Minios-devel – Mini-os development list. https://lists.

xenproject.org/cgi-bin/mailman/listinfo/minios-devel. Online; ac-

cessed March 26, 2021.

[80] Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell Roberts, and

Anirudh Badam. I’m not dead yet!: The role of the operating system

in a kernel-bypass era. In Proceedings of the Workshop on Hot Topics in

Operating Systems, HotOS'19, pages 73–80, New York, NY, USA, 2019.

ACM.

[81] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba

Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen.

KylinX: A Dynamic Library Operating System for Simplified and Ef-

ficient Cloud Virtualization. In 2018 USENIX Annual Technical Con-

ference, USENIX ATC’18, pages 173–186. USENIX Association, July

2018.

[82] Yiming Zhang, Chengfei Zhang, Yaozheng Wang, Kai Yu, Guangtao

Xue, and Jon Crowcroft. Kylinx: Simplified virtualization architecture

for specialized virtual appliances with strong isolation. ACM Trans.

Comput. Syst., 37(1–4), February 2021.

394

